<|ll

7/08S

Language Environment

Debugging Guide

<|ll

7/08S

Language Environment

Debugging Guide

Note
Before using this information and the product it supports, be sure to read the general information under
p79]

Fifth Edition, March 2004
This is a major revision of GA22-7560-03.

This edition applies to Language Environment in z/OS Version 1 Release 5 (5694-A01), Version 1, Release 5 of
z/0S.e (5655-G52), and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com
World Wide Web: |nttp://www.ibm.com/servers/eserver/zseries/zos/webgs.html|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures. iX
Tables. . Xiii
About this document . . XV
Using your documentation. . Xvi
How to read syntax diagrams . . XVii
Symbols . . XVii
Syntax items . Xvii
Syntax examples. . Xviii
This Debugging Guide . . XiX
Where to find more information . . . XiX
Accessing z/OS licensed documents on the Internet . . Xix
Using LookAt to look up message explanations . . XX
Information updates on the web . XXi
Summary of Changes . XXiii
Part 1. Introduction to Debugging in Language Environment 1
Chapter 1. Preparing your routine for debugglng . 3
Setting compiler options . Coe . . 3
C and C++ compiler options . 3
COBOL compiler options. . 6
Fortran compiler options . .7
PL/I compiler options . . .7
VisualAge PL/I compiler options . . . 8
Using Language Environment run-time optlons .9
Determining run-time options in effect 10
Using the CLER CICS transaction to display and set run- trme optlons 12
Controlling storage allocation. C e e e e 12
Stack storage statistics . . 18
Heap storage statistics . . 20
HeapPools storage statistics . .21
Modifying condition handling behavior .21
Language Environment callable services .21
Language Environment run-time options .22
Customizing condition handlers . 23
Invoking the assembler user exit . 24
Establishing enclave termination behavior for unhandled condltlons . 25
Using messages in your routine. . 25
C/C++ . . 26
COBOL . 26
Fortran . . 26
PL/I . 26
Using condition |nformat|on . 26
Using the feedback code parameter . 27
Using the symbolic feedback code. 28
Chapter 2. Classifying errors . . 31
Identifying problems in routines . .o . 31
Language Environment module names . . 31
Common errors in routines . 31

© Copyright IBM Corp. 1991, 2004

Interpreting run-time messages32

Message prefix. .33
Message number .88
Severitycode .. .3
Message text . . . < 7
Understanding abend codes e 7
Userabends.34
Systemabends.34
Chapter 3. Using Language Environment debugging facilities 37
Debug tool . . . R Y £
Language Enwronment dump service, CEESDMP . <
Generating a Language Environment dump with CEE3DMP < V4
Generating a Language Environment dump with TERMTHDACT 41
Generating a Language Environment dump with language-specific functions 45
Understanding the Language Environment dump45
Debugging with specific sections of the Language Enwronment dump .. .62
Multiple enclave dumps. .75
Generating a system dump . . . 4
Steps for generating a system dump ina batch run- t|me enwronment. 4
Steps for generating a system dump in an IMS run-time environment. . . . 78
Steps for generating a system dump in a CICS run-time environment. . . . 78
Steps for generating a Language Environment U4039 abend 79
Steps for Generating a system dump in a zZOS UNIX shell.79
Formatting and analyzing system dumps80
Preparing to use the Language Environment support for IPCS80
Language Environment IPCS Verbexit — LEDATA80
Format.8
Parameters <1
Understanding the HEAPPOOLS trace output o . .83
Understanding the Language Environment IPCS verbeX|t LEDATA output 84
Understanding the HEAP LEDATAoutput98
Diagnosing heap fragmentation problems. 104
Understanding the C/C++-specific LEDATAoutput 104
C/C++-specific sections of the LEDATAoutput. 109
Understanding the COBOL-specific LEDATAoutput 110
COBOL-specific sections of the LEDATA Qutput 114
Formatting individual control blocks T
Requesting a Language Environment trace for debuggmg 116
Locating the trace dump . . . R h V4
Using the Language Enwronment trace table format ina dump report .. . 118
Understanding the trace table entry (TTE) 118
Sample dump for the trace tableentry. 128
Part 2. Debugging Language-Specific Routines. 125
Chapter 4. Debugging C/C++ Routines.127
Debugging C/C++ Input/Output Programs127
Using the __amrc and __amrc2 Structures127
__last_op Values. . . . e 2Le]
Displaying an Error Message W|th the perror() Functon 133
Using __errno2() to Diagnose Application Problems 134
Using C/C++ Listings . . . e K15
Generating C/C++ Listings and Maps e K15
Finding variables. . . . P 174
Generating a Language Enwronment Dump of a C/C++ Routme 145

iv z0S ViR5.0 Language Environment Debugging Guide

cdump() .

csnap() .

ctrace() . .

Sample C Routme that CaIIs cdump

Sample C++ Routine that Generates a Language Enwronment Dump .
Sample Language Environment Dump with C/C++-Specific Information

Finding C/C++ Information in a Language Environment Dump .

. 145
. 146
. 146
. 146

. 148

150

. 156

Sample Language Environment Dump with XPLINK-Specific Informatron

Finding XPLINK Information in a Language Environment Dump
C/C++ Contents of the Language Environment Trace Tables.
Debugging Examples of C/C++ Routines .

Divide-by-Zero Error

Calling a Nonexistent Non- XPLINK Functlon

Calling a Nonexistent XPLINK Function
Handling Dumps Written to the z/OS UNIX File System
Multithreading Consideration
Understanding C/C++ Heap Informatron in Storage Reports

Language Environment Storage Report with HeapPools Statistics.

C Function, __uheapreport, Storage Report .

Chapter 5. Debugging COBOL programs .
Determining the source of error ..
Tracing program logic .
Finding input/output errors .
Handling input/output errors.
Validating data (class test) .
Assessing switch problems .
Generating information about procedures
Using COBOL listings .
Generating a Language Envrronment dump of a COBOL program
COBOL program that calls another COBOL program

COBOL program that calls the Language Environment CEE3DMP caIIabIe

service

161

. 166
. 167
. 172
. 172
. 176
. 179
. 183
. 184
. 184
. 185
. 186

. 189
. 189
. 189
. 189
. 190
. 190
. 190
. 190
. 193
. 193
. 193

Sample Language Envrronment dump W|th COBOL specmc mformatlon

Finding COBOL information in a dump.

Debugging example COBOL programs.
Subscript range error . .
Calling a nonexistent subroutrne .
Divide-by-zero error.

Chapter 6. Debugging FORTRAN routines

Determining the source of errors in FORTRAN routrnes
Identifying run-time errors . .

Using FORTRAN compiler listings

Generating a Language Environment dump of a FORTRAN routme .

DUMP/PDUMP subroutines .

CDUMP/CPDUMP subroutines

SDUMP subroutine .
Finding FORTRAN |nformat|on ina Language Enwronment dump

Understanding the Language Environment traceback table .
Examples of debugging FORTRAN routines.

Calling a nonexistent routine .

Divide-by-zero error.

Chapter 7. Debugging PL/I routines .
Determining the source of errors in PL/I routlnes

. 194

195

. 197
. 201
. 201
. 204
. 207

. 213
. 213
. 213
. 215
. 215
. 216
. 217
. 218
. 221
. 222
. 223
. 223
. 225

. 229
. 229

Contents

\'}

Logic errors in the source routine.229

Invaliduse of PL/l22
Unforeseenerrors .23
Invalid input data. . . . 2 10
Compiler or run-time routlne malfunct|on P~ (0]
System malfunction. . . . N ~2C [0
Unidentified routine malfunct|on e [0
Storage overlay problems23
Using PL/I compiler listings .23
Generating PL/I listingsand maps23
Finding information in PL/I listings233
Generating a Language Environment dump of a PL/I routrne Co. 289
PLIDUMP syntax and options239
PLIDUMP usagenotes .24
Finding PL/I informationinadump24
Traceback e e e e .2
Control blocks for actlve routrnes C e e e ..o, 248
Control blocks associated with the thread. . . . C e 245
PL/I contents of the Language Environment trace table Ce e 247
Debugging example of PL/l routines247
Subscript range error L . L . . L L L L L. L. .. 247
Calling a nonexistent subroutine250
Divide-by-Zeroerror .2B2
Chapter 8. Debugging underCiICS257
Accessing debugging information. . . . 21 Y4
Locating Language Environment run- t|me messages C e e e o257
Locating the Language Environment traceback. 257
Locating the Language Environmentdump 258
Using CICS transaction dump258
Using CICS register and program status word contents 259
Using Language Environment abend and reasoncodes 259
Using Language Environment return codes to CICS.259
Activating Language Environment feature trace records under CICS260
Ensuring transaction rollback 262
Finding data when Language Enwronment returns a nonzero return code 262
Finding data when Language Environment abends internally 262
Finding data when Language Environment Abends from an EXEC CICS
command263
Displaying and modrfymg run- t|me optrons wrth the CLER transactron263
Part 3. Appendixes265
Appendix A. Diagnosing Problems with Language Environment. 267
Diagnosis Checklist. 267
Locating the Name of the Fa|I|ng Routme for a Non XPLINK Applrcatron 268
Searching the IBM Software Support Database 273
Preparing Documentation for an Authorized Program Analysrs Report (APAR) 274
Appendix B. Accessibility. o277
Using assistive technologies . . . -y 4
Keyboard navigation of the user mterface -y
z/OS Information. L .. L L. 2T7
Notices . . . e e e o279
Programming Interface Informat|on C e e e e s 28t

Vi z/0S V1R5.0 Language Environment Debugging Guide

Trademarks. .. .e8

Bibliography . 22 < 16
Language Products Publications283
Related Publications .284
Softcopy Publications .Z285

Index. 287

Contents Vi

Viii z/0S V1R5.0 Language Environment Debugging Guide

Figures

O©oONOOLDAWN =

11

. Options Report Example Produced by Run-Time Option RPTOPTS(ON)
. Storage Report Produced by Run-Time Option RPTSTG(ON)

. Storage Report Produced by RPTSTG(ON) with XPLINK .

. Language Environment Condition Token . e

. The C program CELSAMP .

.The C DLL CELDLL. . . .

. Example Dump Using CEE3DMP R

. Upward-Growing (Non-XPLINK) Stack Frame Format

. Downward-Growing (XPLINK) Stack Frame Format .

10. Coe e e
. Condition Information Block .

12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
583.

Common Anchor Area .

Machine State Information Block . .
Language Environment Dump of Multiple Enclaves .
Example of Formatted Output from LEDATA Verbexit

Example Formatted Detailed Heap Segment Report from LEDATA VerbeX|t .

Example Formatted C/C++ Output from LEDATA Verbexit
Example Formatted COBOL Output from LEDATA Verbexit .
The CAA Formatted By The CBFORMAT IPCS Command .
Format of the Trace Table Entry . Ce e
Trace Table in Dump Output .

__amrc Structure . .

__amrc2 Structure . .
Example of a Routine Usmg perror() .
Example of a Routine Using __errmo2() . .
Example of a Routine Using _EDC_ADD__ ERRNO2 G
Sample Output of a Routine Using _EDC_ADD_ERRNO2 .
Writable Static Map Produced by Prelinker . -
Location of RENT Static Variable in Storage
Writable Static Map Produced by Prelinker .
Location of NORENT Static Variable in Storage .
Example Code for Parameter Variable
Example Code for Parameter Variable
Partial Storage Offset Listing . .
Example Code for Structure Variable .
Example of Aggregate Map
Writable Static Map Produced by Prellnker
Example C Routine Using cdump to Generate a Dump
Fetched module for C routine. .
Example C++ Routine with Protection Excephon Generatlng a Dump
Template file STACK.C .
Header file STACK.H.
Example Dump from Sample C Routme
Memory File Control Block .
Registers on Entry to CEE3DMP
Parameters, Registers, and Variables for Actlve Routlnes
Condition Information for Active Routines

Sample XPLINK-compiled Program (tranmain) WhICh CaIIs a NOXPLINK complled Program
Sample NOXPLINK-compiled Program (trandll) Which Calls an XPLINK-compiled Program

Example Dump of Calling Between XPLINK and non-XPLINK Programs .
Trace Table with C/C++ Trace Table Entry Types 1 thru 4 .
Trace Table with XPLINK Trace Table Entries 5 and 6.

C Routine with a Divide-by-Zero Error

Sections of the Dump from Example C/C++ Routlne

© Copyright IBM Corp. 1991, 2004

.1
. 13
. 15
. 28
. 46
. 49
. 50
. 63
. 64
. 65
.72
. 74
. 76
. 85
.. 99
. 105
. 112
. 115
. 118
. 124
. 128
. 128
. 133
. 134
. 134
. 135
. 139
. 140
. 140
141
. 142
. 142
. 143
. 143
. 144
. 144
. 147
. 148
. 149
. 149
. 150
. 151
. 159
. 160
. 160
. 161

162
163

. 164
. 169
171
. 172
. 173

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

81

X

Pseudo Assembly Listing

C/C++ CAA Information in Dump

Writable Static Map

Enclave Storage Section of Dump .

C/C++ Example of Calling a Nonexistent Subroutme .

Sections of the Dump from Example C Routine .

Pseudo Assembly Listing

Writable Static Map

Enclave Control Blocks and Storage sect|ons in Dump

C/C++ Example of Calling a Nonexistent Subroutine .

Sections of the Dump from Example C Routine .

Pseudo Assembly Listing

Writable Static Map

Enclave Control Blocks and Storage sectlons in Dump

IPCS Panel for Entering Data Set Information.

Storage Report Generated by __uheapreport() .

Example of Using the WITH DEBUGGING MODE Clause .

COBOL Program COBDUMP1 Calling COBDUMP2 . . .

COBOL Program COBDUMP2 Calling the Language Enwronment Dump Serwce CEESDMP
Sections of the Language Environment Dump Called from COBDUMP2 . Coe
Control Block Information for Active COBOL Routines . e
Storage for Active COBOL Programs .

Enclave-Level Data for COBOL Programs .

Process-Level Control Blocks for COBOL Programs .

COBOL Example of Moving a Value Outside an Array Range

Sections of Language Environment Dump for COBOLX .

COBOL Listing for COBOLX .

. COBOL Example of Calling a NoneX|stent Subroutme
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

101.

102.

108.

104.

105.

106.

107.

108.

109.

Sections of Language Environment Dump for COBOLY .

COBOL Listing for COBOLY .

Parameters, Registers, and Variables for Act|ve Routmes Sect|on of Dump for COBOLY
Main COBOL Program, COBOL Subroutine, and Assembler Routine
Sections of Language Environment Dump for Program COBOLZ1
COBOL Listing for COBOLZ2.

Listing for ASSEMZ3 .

Variables Section of Language Enwronment Dump for COBOL22
Listing for COBOLZ2 .

Variables Section of Language Enwronment Dump for COBOLZ1
Example Program That Calls SDUMP. .
Language Environment Dump Generated Using SDUMP

Sections of the Language Environment Dump.

Example of Calling a Nonexistent Routine .

FORTRAN Routine with a Divide-by-Zero Error .

Language Environment Dump from Divide-By-Zero FORTRAN Example .
PL/I Routine Compiled with LIST and MAP . Coe e
Compiler-Generated Listings from Example PL/I Routlne

Traceback Section of Dump

Task Traceback Section .

Control Blocks for Active Routines Sectlon of the Dump .
Control Blocks Associated with the Thread Section of the Dump .
Example of Moving a Value Outside an Array Range .

Sections of the Language Environment Dump.

Example of Calling a Nonexistent Subroutine .

Sections of the Language Environment Dump.

PL/I Routine with a Divide-by-Zero Error.

z/OS V1R5.0 Language Environment Debugging Guide

Sections of the Language Environment Dump Resultmg from a CaII to a NoneX|stent Routlne

. 174
. 175
. 175
. 176
. 176
177
. 178
. 178
. 179
. 179
. 180
. 182
. 182
. 183
. 184
. 187
. 192
. 194

195

. 196
. 198
. 199
. 200
. 201
. 202
. 202
. 204
. 204
. 205
. 206

207

. 208
. 209
. 210
. 210
.21
.21
. 211
. 220
. 221
. 222
. 223

224

. 225
. 226
. 233
. 234
. 242
. 243
. 244
. 246
. 248
. 249
. 250
. 251
. 252

110.
111.

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

Variables from Routine SAMPLE
Object Code Listing from Example PL/I Routlne .
Language Environment Dump from Example PL/I Routine .

Language Environment Traceback Written to the Transient Data Queue .

CICS trace output in the ABBREV format.

CICS trace output in the FULL format. .

Language Environment Non-XPLINK PPA1 and PPA2
Language Environment PPA1 for XPLINK .

PPA2: Compile Unit Block (Non-XPLINK)

PPA2 Compile Unit Block for XPLINK.

PPA2 Timestamp and Version Information for XPLINK
C PPA1. . .
Nonconforming Entry Pomt Type W|th Sample Dump .

. 252
. 253
. 254
. 258
. 260
. 261
. 270
. 271
. 271
. 272
. 272
. 273
. 273

Figures

Xi

Xil z/0S V1R5.0 Language Environment Debugging Guide

Tables

PDMNODMNDODMNODMNDDMNDODMNODNODND 2 A
SNSARSBNES0o®I0rdN=2D

CONOO AWM~

How to Use z/OS Language Environment Publications .

Syntax examples

Common Error Symptoms, POSSIble Causes and Programmer Responses
CEE3DMP Options .

TERMTHDACT Suboptions, Level of Informatlon and Destlnatlons
Condition Handling of 0Cx ABENDS. C e

List of CAA Fields

Language Environment Control Blocks WhICh Can Be Ind|V|duaIIy Formatted .

LE=1 Entry Records .
LE=2 Entry Records . .
Format of the Mutex/CV/Latch Records .
LE=8 Entry Records .
__last_op Values and Diagnosis Informatron
Contents of Listing and Associated Compiler Optlons
C Compiler Listings
C++ Compiler Listings . . .
C/C++ IPA Link Step Listings .
Finding the WSA base address .
Compiler-generated COBOL Listings and Therr Contents
Compiler-generated FORTRAN Listings and Their Contents
Compiler-generated PL/I Listings and Their Contents .

. Typical Comments in a PL/I Static Storage Listing .

Comments in a PL/I Object Code Listing
PL/I Mnemonics.

Finding Data When Language Enwronment Returns a Nonzero Return Code .

Finding Data When Language Environment Abends Internally .

Finding Data When Language Environment Abends from an EXEC CICS Command

Problem Resolution Documentation Requirements .

© Copyright IBM Corp. 1991, 2004

. XVi
. Xviii
. 32
. 38
.41
. 44
. .66
. 115
. 119
. 119
. 122
. 122
. 130
. 135
. 136
. 137
. 137
. 138
. 193
. 215
. 232
. 235
. 237
. 238
. 262
. 262
. 263
. 275

xiii

Xiv z/0S V1R5.0 Language Environment Debugging Guide

About this document

This document supports z/OS (5694—-A01) and z/0S.e™ (5655—-G52).

IBM z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single run-time environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System Services
or CICS®), PL/I, and assembler applications. It offers consistent and predictable
results for language applications, independent of the language in which they are
written.

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:

» z/OS C/C++

+ 0S/390® C/C++

+ C/C++ Compiler for MVS/ESA™

* C/C++ Compiler for z/VM

+ AD/Cycle® C/370™ Compiler

» VisualAge for Java, Enterprise Edition for OS/390

» Enterprise COBOL for z/OS and 0OS/390

+ COBOL for 0S/390 & VM

+ COBOL for MVS & VM (formerly COBOL/370)

» Enterprise PL/I for z/OS and OS/390

» VisualAge PL/I for OS/390

+ PL/I for MVS & VM (formerly PL/I MVS™ & VM)

* VS FORTRAN and FORTRAN |V (in compatibility mode)

Restrictions: The following restrictions apply to z/OS.e:
* The following compilers are not licensed for use on z/OS.e:
- COBOL
- P
— FORTRAN
» The following subsystems are not licensed for use on z/OS.e:
- CICS
- IMs™

» Execution of applications written in the following languages is not functionally
supported on z/OS.e:

— COBOL (except for precompiled COBOL DB2® stored procedures and other
precompiled COBOL applications using the Language Environment
preinitialization interface

— FORTRAN

* The following are not functional and/or not licensed for use on z/OS.e:
— Language Environment Library Routine Retention (LRR)
— Language Environment compatibility preinitialization for C and PL/I
— Run-time library services (RTLS)

» Customers are not permitted to use lower levels of Language Environment on
z/OS.e.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment. The IBM interactive

© Copyright IBM Corp. 1991, 2004 XV

Debug Tool is available with z/OS, or with the latest releases of the C/C++, COBOL,
PL/I and VisualAge for Java compiler products.

Language Environment supports, but is not required for, VS Fortran Version 2
compiled code (z/OS only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information on VisualAge for Java, Enterprise Edition for OS/390, program
number 5655-JAV, see the product documentation.

Using your documentation

The publications provided with Language Environment are designed to help you:

* Manage the run-time environment for applications generated with a Language
Environment-conforming compiler.

» Write applications that use the Language Environment callable services.
» Develop interlanguage communication applications.

» Customize Language Environment.

* Debug problems in applications that run with Language Environment.

* Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library function
syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
All books are available in printable (PDF) and BookManager softcop
formats. For a complete list of publications that you may need, see

Table 1. How to Use z/OS Language Environment Publications

To ... Use ...
Evaluate Language Environment |z/0S Language Environment Concepts Guide|
Plan for Language Environment |z/0S Language Environment Concepts Guide|

7/0OS Language Environment Run-Time
Application Migration Guide|

Install Language Environment |z/0S Program Directory]
Customize Language Environment |z/0S Language Environment Customization|
Understand Language Environment |z/0S Language Environment Concepts Guide|

program models and concepts

|z/0S Language Environment Programming Guide]

Find syntax for Language Environment [z/OS Language Environment Programming|
run-time options and callable services Reference|

Develop applications that run with |z/0S Language Environment Programming Guide]
Language Environment and your language programming guide
Debug applications that run with Iz/OS Language Environment Debugging Guidd

Language Environment, diagnose
problems with Language Environment

Get details on run-time messages |z/0S Language Environment Run-Time Messages

XVi z/0S V1R5.0 Language Environment Debugging Guide

Table 1. How to Use z/OS Language Environment Publications (continued)

To ... Use ...

Develop interlanguage communication 7/0OS Language Environment Writing|
(ILC) applications Interlanguage Communication Applications|and
your language programming guide

Migrate applications to Language 7/0S Language Environment Run-Time|

Environment Application Migration Guidg and the migration
guide for each Language Environment-enabled
language

How to read syntax diagrams

Symbols

Syntax items

This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that

comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

The following symbols may be displayed in syntax diagrams:

Symbol Definition

> Indicates the beginning of the syntax diagram.

—> Indicates that the syntax diagram is continued to the next line.
— Indicates that the syntax is continued from the previous line.
—>< Indicates the end of the syntax diagram.

Syntax diagrams contain many different items. Syntax items include:

» Keywords - a command name or any other literal information.

» Variables - variables are italicized, appear in lowercase and represent the name
of values you can supply.

» Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

» Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

* Fragment references - a part of a syntax diagram, separated from the diagram to
show greater detail.

» Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example,

parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

About this document XVii

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or

optional.

Iltem type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal
line.

Syntax examples
The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

. . . . »>—KEYWORD—required_item
Required items appear on the main path of the horizontal

line. You must specify these items.

Required choice.

»—KEYWORD—[requir‘ed_choicelJ

A required choice (two or more items) appears in a required_choice?

vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

Optional item.
»»—KEYWORD

Optional items appear below the main path of the Loptiona] item]
horizontal line. -

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

»>—KEYWORD
i:opti onal_choi cel:‘
optional_choice2

Default.

Default items appear above the main path of the

. . s . . . default_choicel
horizontal line. The remaining items (required or optional) »»_kEYKORD il

r
appear on (required) or below (optional) the main path of iiopﬁona]_choicez:‘
the horizontal line. The following example displays a optional_choice3
default with optional items.

XViii z/0S V1R5.0 Language Environment Debugging Guide

Table 2. Syntax examples (continued)

Item Syntax example
Variable.
. . o »>—KEYWORD—variable >
Variables appear in lowercase italics. They represent
names or values.
Repeatable item.
An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated. »»—KEYWORD—Y—repeatable item ><
A character within the arrow means you must separate
repeated items with that character. ’
. »»—KEYWORD— table it ><
An arrow returning to the left above a group of repeatable 0 repeatable_ttem
items indicates that one of the items can be selected, or a
single item can be repeated.
Fragment.
»>—KEYWORD fragment | ><
The - fragment |- symbol indicates that a labelled group — ’ |
is described below the main syntax diagram. Syntax is fragment:
occasionally broken into fragments if the inclusion of the
frggment would overly complicate the main syntax ,required_choicel |
diagram. |—,defau1t_cho1'ce—|

,required_choice2
I—,opti onal_choi ceJ

This Debugging Guide

Iz/0S Language Environment Debugging Guidd provides assistance with detecting
and locating programming errors that occur during run time under Language
Environment. It can help you establish a debugging process to analyze data and
narrow the scope and location of where an error might have occurred. You can read
about how to prepare a routine for debugging, how to classify errors, and how to
use the debugging facilities Language Environment provides. Also included are
chapters on debugging HLL-specific routines and routines that run under CICS. At
the end of this book is a list of all Language Environment and HLL messages.

This book is for application programmers interested in techniques for debugging
run-time programs. To use this book, you should be familiar with:

* The Language Environment product

» Appropriate languages that use the compilers listed above

* Program storage concepts

Where to find more information

Please see |z/0S Information Roadmap|for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing z/OS licensed documents on the Internet

z/0S™ licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:

[rttp://www.ibm.com/servers/resourcelink|

About this document XiX

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. '

To obtain your IBM Resource Link user ID and password, log on to:
[http://www.ibm.com/servers/resourcelink|

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either 2/0OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message explanations
for z/OS elements and features, z/VM®, and VSE:

* The Internet. You can access IBM message explanations directly from the LookAt
Web site at|nttp://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.|

* Your z/0OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z0OS UNIX® System
Services running OMVS).

* Your Windows® workstation. You can install code to access IBM message
explanations on the z/OS Collection (SK3T-4269), using LookAt from a Windows
DOS command line.

* Your wireless handheld device. You can use the LookAt Mobile Edition with a
handheld device that has wireless access and an Internet browser (for example,
Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for
Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt Web
site.

You can obtain code to install LookAt on your host system or Windows workstation
from a disk on your z/OS Collection (SK3T-4269), or from the LookAt Web site
(click Download, and select the platform, release, collection, and location that suit
your needs). More information is available in the LOOKAT.ME files available during
the download process.

1. z/0S.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

XX z/OS V1R5.0 Language Environment Debugging Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and
Documentation APARs for z/OS and z/OS.e, see the online document at:

[ttp://www.s390.7bm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS|

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

About this document XXi

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

XXii z/0S V1R5.0 Language Environment Debugging Guide

Summary of Changes

Summary of Changes
for GA22-7560-04
z/OS Version 1 Release 5

This document contains information previously presented in [zZOS Languagé
[Environment Debugging Guidd, GA22-7560-03, which supported z/OS Version 1
Release 4.

The following summarizes the changes to that information.

New Information

» The heap pools algorithm now allows for the definition of one to twelve heap
pools. For more information, see|‘Understanding the HEAPPOOLS trace output’

on page 83, and[‘Language Environment Storage Report with HeapPool

Statistics” on page 185.

Changed Information

* The information about allocating stack storage has been updated. For more
information, see |“AIIocating stack storage” on page 2d.

This document also includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document — for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of Changes
for GA22-7560-03
z/OS Version 1 Release 4

This document contains information previously presented in [z/0S Languagé
|Environment Debugging Guide, GA22-7560-02, which supported z/OS Version 1
Release 3.

The following summarizes the changes to that information.

New Information
* Information is added to indicate this document supports z/OS.e.

+ Additonal Common Anchor Area (CAA) fields have been added. For more
information, see [Table 7 on page 66|

Changed Information

» The Debugging C/C++ Routines chapter has been updated. For more
information, see |“Finding variables” on page 137.|

© Copyright IBM Corp. 1991, 2004 xxiii

XXiv

This document also includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Summary of Changes
for GA22-7560-02
z/0OS Version 1 Release 3

This document contains information previously presented in|z/OS Language
|Environment Debugging Guidd, GA22-7560-01, which supported z/OS Version 1
Release 2.

The following summarizes the changes to that information.

New Information
» Alternative Vendor Heap Manager (VHM) support has been documented.
* An appendix with zZ/OS product accessibility information has been added.

This document also includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Summary of Changes
for GA22-7560-01
z/0OS Version 1 Release 2

This document contains information previously presented in [zZ0S Languagé
|Environment Debugging Guide, GA22-7560-00, which supported z/OS Version 1
Release 1.

The following summarizes the changes to that information.

New Information

* A new trace function is available which allows the user to format individual
control blocks in a dump, rather than having to create the full LEDATA output
which contains many formatted control blocks. See [‘Formatting individual control|
[blocks” on page 114

« [‘Understanding the trace table entry (TTE)” on page 118/ has been enhanced to
provide significant additional information about the content and meaning of trace
table entries.

* The HEAPCHK run-time option has a new suboption (call-level) which will aid in
identifying the cause of heap storage leaks. See f‘Diagnosing storage IeakI
[problems” on page 103

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

z/OS V1R5.0 Language Environment Debugging Guide

Part 1. Introduction to Debugging in Language Environment

This part provides information about options and features you can use to prepare
your routine for debugging. It describes some common errors that occur in routines

and provides methods of generating dumps to help you get the information you
need to debug your routine.

© Copyright IBM Corp. 1991, 2004

2 2/0S V1R5.0 Language Environment Debugging Guide

Chapter 1. Preparing your routine for debugging

This chapter describes options and features that you can use to prepare your
routine for debugging. The following topics are covered:

» Compiler options for C, C++, COBOL, Fortran, and PL/I

* Language Environment run-time options

» Use of storage in routines

» Options for modifying condition handling

» Assembler user exits

* Enclave termination behavior

* User-created messages

* Language Environment feedback codes and condition tokens

Setting compiler options

The following sections discuss language-specific compiler options important to
debugging routines in Language Environment. These sections cover only the
compiler options that are important to debugging. For a complete list of compiler
options, refer to the appropriate HLL publications.

The use of some compiler options (such as TEST) can affect the performance of
your routine. You must set these options before you compile. In some cases, you
might need to remove the option and recompile your routine before delivering your
application.

C and C++ compiler options
When using C, set the TEST(ALL) suboption, which is equivalent to
TEST(LINE,BLOCK,PATH,SYM,HOOK). For C++, the option TEST is equivalent to
TEST(HOOK). Following is a list of TEST suboptions that you can use to simplify
run-time debugging.

ALL Sets all of the TEST suboptions.

BLOCK Generates symbol information for nested blocks.

HOOK Generates all possible hooks. For details on this suboption, see
|C/C++ User’s Guidd

LINE Generates line number hooks and allows a debugging tool to generate a
symbolic dump.

PATH Generates hooks at all path points; for example, hooks are inserted at
if-then-else points before a function call and after a function call.

SYM Generates symbol table information and enables Language Environment to

generate a dump at run time.

When you specify SYM, you also get the value and type of variables
displayed in the Local Variables section of the dump. For example, if in
block 4 the variable x is a signed integer of 12, and in block 2 the variable x
is a signed integer of 1, the following output appears in the Local Variables
section of the dump:

%BLOCK4:>x signed int 12
%BLOCK2:>x signed int 1

If a nonzero optimization level is used, variables do not appear in the dump.

© Copyright IBM Corp. 1991, 2004 3

4

You can use these C/C++ compiler options to make run-time debugging easier:

AGGREGATE
(©)
ATTRIBUTE
(C++)

CHECKOUT
(©)
EVENTS

EXPMAC
FLAG
GONUMBER

INFO (C++)
INLINE

INLRPT

LIST
OFFSET
PHASEID

PPONLY

SERVICE

SHOWINC
SOURCE
TERMINAL

TEST

XPLINK
(BACKCHAIN)
XPLINK
(STOREARGS)
XREF

Specifies that a layout for struct and union type variables appear in the
listing.

For C++ compile, cross reference listing with attribute information. If XREF
is specified, the listing also contains reference, definition and modification
information.

Provides informational messages indicating possible programming errors.

Produces an events file that contains error information and source file
statistics.

Macro expansions with the original source.

Specifies the minimum severity level that is tolerated.

Generates line number tables corresponding to the input source file. This
option is turned on when the TEST option is used. This option is needed to
show statement numbers in dump output.

Indication of possible programming errors.

Inline Summary and Detailed Call Structure Reports. (Specify with the
REPORT sub-option).

Generates a report on status of functions that were inlined. The OPTIMIZE
option must also be specified.

Listing of the pseudo-assembly listing produced by the compiler.

Displays the offset addresses relative to the entry point of each function.
Causes each compiler module (phase) to issue an informational message
which identifies the compiler phase module name, product identifier, and
build level.

Completely expanded z/OS C, or z/OS C++ source code, by activating the
preprocessor (PP) only. The output shows, for example, all the "#include”
and "#define” directives.

Places a string in the object module, which is displayed in the traceback if
the application fails abnormally.

All included text in the listing.

Includes source input statements and diagnostic messages in the listing.
Directs all error messages from the compiler to the terminal. If not specified,
this is the default.

Generates information for debugging interface. This also generates symbol
tables needed for symbolic variables in the dump.

Generates a prolog that saves redundant information in the calling function’s
stack frame.

Generates code to store arguments that are normally passed in registers,
into the argument area.

For C compile, cross reference listing with reference, definition, and
modification information.

For C++ compile, cross reference listing with reference, definition, and
modification information. If you specify ATTRIBUTE, the listing also contains
attribute information.

For a detailed explanation of these options, see|z/0S C/C++ User’s Guide,

IPA compile step sub-options
You can use the following IPA compile sub-options to prepare your program for
run-time debugging:

ATTRIBUTE | NOATTRIBUTE

Indicates whether the compiler generates information in the IPA object file that will
be used in the IPA Link step if you specify the ATTR or XREF option on that step.

z/OS V1R5.0 Language Environment Debugging Guide

The difference between specifying IPA(ATTR) and specifying ATTR, or XREF, is that
IPA(ATTR) does not cause the compiler to generate a Cross Reference listing
section after IPA Compile step source analysis is complete. It also does not cause
the compiler to generate a Storage Offset or External Symbol Cross Reference
listing section during IPA Compile step code generation.

The default is IPA(INOATTRIBUTE). The abbreviations are IPA(ATTRINOATTR). If
you specify the ATTR or XREF option, it overrides the IPA(NOATTRIBUTE) option.

GONUMBER | NOGONUMBER

Indicates whether the compiler saves information about source file line numbers in
the IPA object file. The difference between specifying IPA(GONUMBER) and
GONUMBER is that IPA(GONUMBER) does not cause GONUMBER tables to be
built during IPA Compile step code generation. If the compiler does not build
GONUMBER tables, the size of the object module is smaller.

The default is IPA(INOGONUMBER). The abbreviations are
IPA(GONUMINOGONUM). If you specify the GONUMBER or LIST option, it
overrides the IPAINOGONUMBER) option.

LIST | NOLIST

Indicates whether the compiler saves information about source line numbers in the
IPA object file. The difference between specifying IPA(LIST) and LIST is that
IPA(LIST) does not cause a Pseudo-Assembly listing to be generated during IPA
Compile step code generation.

The default is IPA(NOLIST). The abbreviations are IPA(LISINOLIS). If you specify
the GONUMBER or LIST option, it overrides the IPA(NOLIST) option.

XREF | NOXREF

Indicates whether the compiler generates information in the IPA object file that will
be used in the IPA Link step if you specify ATTR or XREF on that step.

The difference between specifying IPA(XREF) and specifying ATTR or XREF is that
IPA(XREF) does not cause the compiler to generate a Cross Reference listing
section after IPA Compile step source analysis is complete. It also does not cause
the compiler to generate a Storage Offset or External Symbol Cross Reference
listing section during IPA Compile step code generation.

The default is IPA(INOXREF). The abbreviations are IPA(XRINOXR). If you specify
the ATTR or XREF option, it overrides the IPA(NOXREF) option.

IPA link step sub-options
You can use these IPA Link Step sub-options to prepare your program for run-time
debugging:

DUP | NODUP

Indicates whether the IPA Link step writes a message and a list of duplicate
symbols to the console.

The default is IPA(DUP).

Chapter 1. Preparing your routine for debugging 5

ER | NOER

Indicates whether the IPA Link step writes a message and a list of unresolved
symbols to the console.

The default is IPA(NNOER).
MAP | NOMAP

Specifies that the IPA Link step will produce a listing. The listing contains a Prolog
and the following sections:

* Object File Map

» Source File Map

» Compiler Options Map

* Global Symbols Map

» Partition Map for each partition

The default is IPAINOMAP).

Refer to the Inter-procedural Analysis chapter in the |z/Z0S C/C++ Programming
for an overview and more details about Inter-procedural Analysis.

COBOL compiler options

When using COBOL, set the SYM suboption of the TEST compiler option. The SYM
suboption of TEST causes the compiler to add debugging information into the object
program to resolve user names in the routine and to generate a symbolic dump of
the DATA DIVISION. With this suboption specified, statement numbers will also be
used in the dump output along with offset values.

To simplify debugging, use the NOOPTIMIZE compiler option. Program optimization
can change the location of parameters and instructions in the dump output.

You can use the following COBOL compiler options to prepare your program for
run-time debugging:

LIST Produces a listing of the assembler expansion of your source code and
global tables, literal pools, information about working storage, and size of
routine’s working storage.

MAP Produces lists of items in data division including a data division map, global
tables, literal pools, a nested program structure map, and attributes.
OFFSET Produces a condensed PROCEDURE DIVISION listing containing line

numbers, statement references, and location of the first instruction
generated for each statement.

OuUTDD Specifies the destination of DISPLAY statement messages.

SOURCE Produces a listing of your source program with any statements embedded
by PROCESS, COPY, or BASIS statements.

TEST Produces object code that can run with a debugging tool, or adds

information to the object program to produce formatted dumps. With or
without any suboptions, this option forces the OBJECT option. When
specified with any of the hook-location suboption values except NONE, this
option forces the NOOPTIMIZE option. SYM suboption includes statement
numbers in the Language Environment dump and produces a symbolic

dump.

VBREF Produces a cross-reference of all verb types used in the source program
and a summary of how many times each verb is used.

XREF Creates a sorted cross-reference listing.

6 2z/0SViR5.0 Language Environment Debugging Guide

For more detail on these options and functions, see |Enterprise COBOL for z/0§

land 0S/390 Programming Guidg or|COBOL for 0S/390 & VM Programming Guidg

Fortran compiler options

You can use these Fortran compiler options to prepare your program for run-time

debugging:
FIPS

FLAG

GOSTMT

ICA

LIST

MAP
OPTIMIZE
SDUMP

SOURCE
SRCFLG

SXM™
SYM

TERMINAL

TEST
TRMFLG

XREF
VECTOR

Specifies whether standard language flagging is to be performed. This is
valuable if you want to write a program conforming to FORTRAN 77.
Specifies the level of diagnostic messages to be written. | (Information), E
(Error), W (Warning), or S (Severe). You can also use FLAG to suppress
messages that are below a specified level. This is useful if you want to
suppress information messages, for example.

Specifies that statement numbers are included in the run-time messages
and in the Language Environment dump.

Specifies whether intercompilation analysis is to be performed, specifies the
files containing intercompilation analysis information to be used or updated,
and controls output from intercompilation analysis. Specify ICA when you
have a group of programs and subprograms that you want to process
together and you need to know if there are any conflicting external
references, mismatched commons, and so on.

Specifies whether the object module list is to be written. The LIST option
lets you see the pseudo-assembly language code that is similar to what is
actually generated.

Specifies whether a table of source program variable names, named
constants, and statement labels and their displacements is to be produced.
Specifies the optimizing level to be used during compilation. If you are
debugging your program, it is advisable to use NOOPTIMIZE.

Specifies whether dump information is to be generated.

Specifies whether a source listing is to be produced.

Controls insertion of error messages in the source listing. SRCFLG allows
you to view error messages after the initial line of each source statement
that caused the error, rather than at the end of the listing.

Formats SREF or MAP listing output to a 72-character width.

Invokes the production of SYM cards in the object text file. SYM cards
contain location information for variables within a Fortran program.
Specifies whether error messages and compiler diagnostics are to be
written on the SYSTERM data set and whether a summary of messages for
all the compilations is to be written at the end of the listing.

Specifies whether to override any optimization level above OPTIMIZE(O).
This option adds run-time overhead.

Specifies whether to display the initial line of source statements in error and
their associated error messages at the terminal.

Creates a cross-reference listing.

Specifies whether to invoke the vectorization process. A vectorization report
provides detailed information about the vectorization process.

For more detail on these options and functions, see VS FORTRAN Version 2
Programming Guide for CMS and MVS or VS FORTRAN Version 2 Language and
Library Reference.

PL/I compiler options

When using PL/I, specify the TEST compiler option to control the level of testing
capability that are generated as part of the object code. Suboptions of the TEST
option such as SYM, BLOCK, STMT, and PATH control the location of test hooks

Chapter 1. Preparing your routine for debugging 7

VisualAge PL/I

and specify whether or not a symbol table is generated. For more information about
TEST, its suboptions, and the placement of test hooks, see PL/I for MVS & VM
Programming Guide.

To simplify debugging and decrease compile time, set optimization to NOOPTIMIZE

or OPTIMIZE(0). Higher optimization levels can change the location where
parameters and instructions appear in the dump output.

You can use these compiler options to prepare PL/I routines for debugging:

AGGREGATE Specifies that a layout for arrays and major structures appears in the

listing.
ESD Includes the external symbol dictionary in the listing.
GONUMBER / Tells the compiler to produce additional information specifying that line
GOSTMT numbers from the source routine can be included in run-time messages

and in the Language Environment dump.

INTERRUPT Specifies that users can establish an ATTENTION ON-unit that gains
control when an attention interrupt occurs.

LIST Produces a listing of the assembler expansion of source code and global
tables, literal pools, information about working storage, and size of routine’s
working storage.

LMESSAGE Tells the compiler to produce run-time messages in a long form. If the
cause of a run-time malfunction is a programmer’s understanding of
language semantics, specifying LMESSAGE could better explain warnings
or other information generated by the compiler.

MAP Tells the compiler to produce tables showing how the variables are
mapped in the static internal control section and in the stack frames, thus
enabling static internal and automatic variables to be found in the
Language Environment dump. If LIST is also specified, the MAP option
also produces tables showing constants, control blocks, and INITIAL
variable values.

OFFSET Specifies that the compiler prints a table of statement or line numbers for
each procedure with their offset addresses relative to the primary entry
point of the procedure.

SOURCE Specifies that the compiler includes a listing of the source routine in the
listing.

STORAGE Includes a table of the main storage requirements for the object module in
the listing.

TERMINAL Specifies what parts of the compiler listing produced during compilation are
directed to the terminal.

TEST Specifies the level of testing capability that is generated as part of the

object code. TEST also controls the location of test hooks and whether or
not the symbol table is generated. Because the TEST option increases the
size of the object code and can affect performance, limit the number and
placement of hooks.

XREF and Creates a sorted cross-reference listing with attributes.

ATTRIBUTES

For more detail on PL/I compiler options, see PL/I for MVS & VM Programming
Guide.

compiler options
The following VisualAge PL/I compiler options can be specified when preparing your
VisualAge PL/I routines for debugging:

AGGREGATE Specifies that a layout for arrays and major structures appears in the
listing.

8 2/0SViR5.0 Language Environment Debugging Guide

GONUMBER / Tells the compiler to produce additional information specifying that line

GOSTMT numbers from the source routine can be included in run-time messages
and in the Language Environment dump.

INTERRUPT Specifies that users can establish an ATTENTION ON-unit that gains
control when an attention interrupt occurs.

LIST Produces a listing of the assembler expansion of source code and global
tables, literal pools, information about working storage, and size of routine’s
working storage.

OFFSET Displays the offset addresses relative to the entry point of each function.

SOURCE Specifies that the compiler includes a listing of the source routine in the
listing.

STORAGE Includes a table of the main storage requirements for the object module in
the listing.

TEST Specifies the level of testing capability that is generated as part of the

object code. TEST also controls the location of test hooks and whether or
not the symbol table is generated. Because the TEST option increases the
size of the object code and can affect performance, limit the number and
placement of hooks.

XREF and Creates a sorted cross-reference listing with attributes.

ATTRIBUTES

For further details on the VisualAge PL/I compiler options, see |VisualAge PL/I for
[0S/390 Programming Guidel

Using Language Environment run-time options

There are several run-time options that affect debugging in Language Environment.
The TEST run-time option, for example, can be used with a debugging tool to
specify the level of control the debugging tool has when the routine being initialized
is started. The ABPERC, CHECK, DEPTHCONDLMT, ERRCOUNT, HEAPCHK,
INTERRUPT, TERMTHDACT, TRACE, TRAP, and USRHDLR options affect
condition handling. The ABTERMENC option affects how an application ends (that
is, with an abend or with a return code and reason code) when an unhandled
condition of severity 2 or greater occurs.

The following Language Environment run-time options affect debugging:

ABPERC Specifies that the indicated abend code bypasses the condition handler.

ABTERMENC Specifies enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater.

CHECK Determines whether run-time checking is performed.

NODEBUG Controls the COBOL USE FOR DEBUGGING declarative.

DEPTHCONDLMT Specifies the limit for the depth of nested synchronous conditions in
user-written condition handlers. (Asynchronous signals do not affect

DEPTHCONDLMT.)
ERRCOUNT Specifies the number of synchronous conditions of severity 2 or greater
tolerated. (Asynchronous signals do not affect ERRCOUNT.)
HEAPCHK Determines whether additional heap check tests are performed.

INFOMSGFILTER Filters user specified informational messages from the MSGFILE.
Note: Affects only those messages generated by Language
Environment® and any routine that calls CEEMSG. Other routines that
write to the message file, such as CEEMOUT, do not have a filtering

option.
INTERRUPT Causes Language Environment to recognize attention interrupts.
MSGFILE Specifies the ddname of the Language Environment message file.

Chapter 1. Preparing your routine for debugging 9

MSGQ

PROFILE

RPTOPTS
RPTSTG
STORAGE
TERMTHDACT
TEST

TRACE

TRAP

USRHDLR

XUFLOW

Specifies the number of instance specific information (ISI) blocks that
are allocated on a per-thread basis for use by an application. Located
within the Language Environment condition token is an ISl token. The
ISI contains information used by the condition manager to identify and
react to a specific occurrence of a condition.

Controls the use of an optional profiler tool, which collects performance
data for the running application. When this option is in effect, the profiler
is loaded and the debugger cannot be loaded. If the TEST option is in
effect when PROFILE is specified, the profiler tool will not be loaded.
Causes a report to be produced which contains the run-time options in
effect. See [‘Determining run-time options in effect”l below.

Generates a report of the storage used by an enclave. See [Controlling]
lstorage allocation” on page 12.
Specifies that Language Environment initializes all heap and stack
storage to a user-specified value.

Controls response when an enclave terminates due to an unhandled
condition of severity 2 or greater.

Specifies the conditions under which a debugging tool assumes control.
Activates Language Environment run-time library tracing and controls
the size of the trace table, the type of trace, and whether the trace table
should be dumped unconditionally upon termination of the application.
When TRAP is set to ON, Language Environment traps routine
interrupts and abends, and optionally prints trace information or invokes
a user-written condition handling routine. With TRAP set to OFF, the
operating system handles all interrupts and abends.

You should generally set TRAP to ON, or your run-time results can be
unpredictable.

Specifies the behavior of two user-written condition handlers. The first
handler specified will be registered at stack frame 0. The second
handler specified will be registered before any other user-written
condition handlers, once the handler is enabled by a condition.
Specifies whether or not an exponent underflow causes a routine
interrupt.

For a more detailed discussion of these run-time options, see [z/0S Language|

|Environment Programming Reference .

Determining run-time options in effect

The run-time options in effect at the time the routine is run can affect routine
behavior. Use RPTOPTS(ON) to generate an options report in the Language
Environment message file when your routine terminates. The options report lists
run-time options, and indicates where they were set.

|Figure 1 on page 11|shows a sample options report.

10 2/0S V1R5.0 Language Environment Debugging Guide

Options Report for Enclave main 01/15/03 12:33:57 PM
Language Environment VO1 R05.00

LAST WHERE SET OPTION

Installation default ABPERC (NONE)

Installation default ABTERMENC (ABEND)

Installation default NOAIXBLD

Programmer default ALL31(ON)

Assembler user exit ANYHEAP (32768,16384 ,ANYWHERE , FREE)

Installation default NOAUTOTASK

Assembler user exit BELOWHEAP(8192,8192, FREE)

Installation default CBLOPTS (ON)

Installation default CBLPSHPOP (ON)

Installation default CBLQDA(OFF)

Installation default CHECK (ON)

Installation default COUNTRY (US)

Installation default NODEBUG

Installation default DEPTHCONDLMT (10)

Installation default ENVAR("")

Installation default ERRCOUNT(0)

Installation default ERRUNIT(6)

Installation default FILEHIST

Installation default FILETAG (NOAUTOCVT,NOAUTOTAG)

Default setting NOFLOW

Assembler user exit HEAP(49152,16384 ,ANYWHERE ,KEEP,8192,4096)

Installation default HEAPCHK(OFF,1,0,0,0)

Installation default HEAPPOOLS (OFF,8,10,32,10,128,10,256,10,1024,10,2048,
10,0,10,0,10,0,10,0,10,0,10,0,10)

Installation default INFOMSGFILTER(OFF,,,,)

Installation default INQPCOPN

Installation default INTERRUPT (OFF)

Installation default LIBRARY (SYSCEE)

Programmer default LIBSTACK(4096,4096,FREE)

Installation default MSGFILE(SYSOUT,FBA,121,0,NOENQ)

Installation default MSGQ(15)

Installation default NATLANG (ENU)

Mapped NONIPTSTACK(See THREADSTACK)

Installation default OCSTATUS

Installation default NOPC

Installation default PLITASKCOUNT(20)

Programmer default POSIX(ON)

Installation default PROFILE(OFF,"")

Installation default PRTUNIT(6)

Installation default PUNUNIT(7)

Installation default RDRUNIT(5)

Installation default RECPAD (OFF)

Invocation command RPTOPTS (ON)

Invocation command RPTSTG(ON)

Installation default NORTEREUS

Installation default RTLS (OFF)

Installation default NOSIMVRD

Programmer default STACK(4096,4096 ,ANYWHERE, FREE,524288,131072)

Programmer default STORAGE (NONE,NONE,NONE, 1024)

Installation default TERMTHDACT (TRACE, ,96)

Installation default NOTEST(ALL,"*","PROMPT","INSPPREF")

Installation default THREADHEAP (4096 ,4096 , ANYWHERE , KEEP)

Programmer default THREADSTACK (ON,4096,4096 ,ANYWHERE ,KEEP,131072,131072)

Installation default TRACE(OFF,4096,DUMP,LE=0)

Installation default TRAP(ON,SPIE)

Installation default UPSI(00000000)

Installation default NOUSRHDLR(,)

Installation default VCTRSAVE (OFF)

Installation default VERSION()

Installation default XPLINK(OFF)

Installation default XUFLOW (AUTO)

Figure 1. Options Report Example Produced by Run-Time Option RPTOPTS(ON)

Chapter 1. Preparing your routine for debugging 11

Using the CLER CICS transaction to display and set run-time options

The CICS transaction (CLER) allows you to display all the current Language
Environment run-time options for a region, and to also have the capability to modify
a subset of these options.

The following run-time options can be modified with the CICS CLER transaction:
* TRAP(ONIOFF)

« TERMTHDACT(QUIETIMSGITRACEIDUMPIUAONLYIUATRACEI
UADUMPIUAIMM)

« RPTOPTS(ONIOFF)

« RPTSTG(ONIOFF)

« ALL31(ONIOFF)

« CBLPSHPOP(ONIOFF)

For more information about the CICS CLER transaction, see[‘Displaying and|
Imodifying run-time options with the CLER transaction” on page 263 |

Controlling storage allocation

The following run-time options control storage allocation:
» STACK

+ THREADSTACK

* LIBSTACK

+ THREADHEAP

+ HEAP

* ANYHEAP

« BELOWHEAP

+ STORAGE

« HEAPPOOLS

lz/0S Language Environment Programming Guidg provides useful tips to assist with
the tuning process. Appropriate tuning is necessary to avoid performance problems.

To generate a report of the storage a routine (or more specifically, an enclave) used
during its run, specify the RPTSTG(ON) run-time option. The storage report,
generated during enclave termination provides statistics that can help you
understand how space is being consumed as the enclave runs. If storage
management tuning is desired, the statistics can help you set the corresponding
storage-related run-time options for future runs. The output is written to the
Language Environment message file.

Neither the storage report nor the corresponding run-time options include the
storage that Language Environment acquires during early initialization, before
run-time options processing, and before the start of space management monitoring.
In addition, Language Environment does not report alternative Vendor Heap
Manager activity.

[Figure 2 on page 13|and [Figure 3 on page 15|show sample storage reports. The
sections that follow these reports describe the contents of the reports.

12 2/0S V1R5.0 Language Environment Debugging Guide

Storage Report for Enclave main 01/15/03 12:33:57 PM

Language Environment VOl R05.00

STACK statistics:

Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 7504
Largest used by any thread: 7504
Number of segments allocated: 2
Number of segments freed: 0
THREADSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 3336
Largest used by any thread: 3336
Number of segments allocated: 6
Number of segments freed: 0
LIBSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Number of segments allocated: 0
Number of segments freed: 0
THREADHEAP statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0
HEAP statistics:
Initial size: 49152
Increment size: 16384
Total heap storage used (sugg. initial size): 28312
Successful Get Heap requests: 242
Successful Free Heap requests: 213
Number of segments allocated: 1
Number of segments freed: 0
HEAP24 statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0
ANYHEAP statistics:
Initial size: 32768
Increment size: 16384
Total heap storage used (sugg. initial size): 105744
Successful Get Heap requests: 37
Successful Free Heap requests: 20
Number of segments allocated: 6
Number of segments freed: 5 5

Figure 2. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 1 of 2)

Chapter 1. Preparing your routine for debugging

13

BELOWHEAP statistics:

Initial size: 8192
Increment size: 8192
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0
Additional Heap statistics:
Successful Create Heap requests: 1
Successful Discard Heap requests: 1
Total heap storage used: 4912
Successful Get Heap requests: 3
Successful Free Heap requests: 3
Number of segments allocated: 2
Number of segments freed: 2
Largest number of threads concurrently active: 2

End of Storage Report
1

Figure 2. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 2 of 2)

14 2/0S V1R5.0 Language Environment Debugging Guide

Storage Report for Enclave main 01/15/03 1:16:48 PM

Language Environment VOl R05.00

STACK statistics:

Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 4256
Largest used by any thread: 4256
Number of segments allocated: 2
Number of segments freed: 0
THREADSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 11688
Largest used by any thread: 2584
Number of segments allocated: 6
Number of segments freed: 0
XPLINK STACK statistics:
Initial size: 524288
Increment size: 131072
Largest used by any thread: 4416
Number of segments allocated: 1
Number of segments freed: 0
XPLINK THREADSTACK statistics:
Initial size: 131072
Increment size: 131072
Largest used by any thread: 2944
Number of segments allocated: 6
Number of segments freed: 0
LIBSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Number of segments allocated: 0
Number of segments freed: 0
THREADHEAP statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0
HEAP statistics:
Initial size: 32768
Increment size: 32768
Total heap storage used (sugg. initial size): 56544
Successful Get Heap requests: 29
Successful Free Heap requests: 13
Number of segments allocated: 2
Number of segments freed: 0

Figure 3. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 1 of 4)

Chapter 1. Preparing your routine for debugging

15

HEAP24 statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size):
Successful Get Heap requests:
Successful Free Heap requests:
Number of segments allocated:
Number of segments freed:
ANYHEAP statistics:
Initial size: 16384
Increment size: 8192
Total heap storage used (sugg. initial size): 1033472
Successful Get Heap requests: 42
Successful Free Heap requests: 20
Number of segments allocated: 10
Number of segments freed: 8
BELOWHEAP statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size):
Successful Get Heap requests:
Successful Free Heap requests:
Number of segments allocated:
Number of segments freed:
Additional Heap statistics:
Successful Create Heap requests: 1
Successful Discard Heap requests: 1
Total heap storage used: 4912
Successful Get Heap requests: 3
Successful Free Heap requests:
Number of segments allocated:
Number of segments freed:
HeapPools Statistics:
Pool 1 size: 8
Successful Get Heap requests: 1- 8 8
Pool 2 size: 32
Successful Get Heap requests: 9- 16
Successful Get Heap requests: 17- 24
Successful Get Heap requests: 25- 32
Pool 3 size: 128
Successful Get Heap requests: 33- 40
Successful Get Heap requests: 41- 48
Successful Get Heap requests: 49- 56
Successful Get Heap requests: 57- 64
Successful Get Heap requests: 65- 72
Successful Get Heap requests: 73- 80
Successful Get Heap requests: 81- 88
Successful Get Heap requests: 89- 96
Successful Get Heap requests: 97- 104
Successful Get Heap requests: 113- 120
Successful Get Heap requests: 121- 128

[oNoNoNoNo)

[oNoNoNoNo)

NN W

w o1 w

PO PO WPDEWWW

Figure 3. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 2 of 4)

16 2/0S V1R5.0 Language Environment Debugging Guide

Pool 4 size:

Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful

Pool 5 size:

Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful

Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get

1
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get

256
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap

024
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap
Heap

requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:

requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:
requests:

129- 136 6
137- 144 3
145- 152 4
153- 160 2
161- 168 8
169- 176 5
177- 184 4
185- 192 6
193- 200 3
201- 208 4
209- 216 2
217- 224 3
225- 232 4
233- 240 2
241- 248 2
249- 256 1
257- 264 4
265- 272 1
273- 280 3
281- 288 2
289- 296 2
305- 312 6
313- 320 5
321- 328 4
329- 336 2
337- 344 3
353- 360 2
361- 368 4
369- 376 5
377- 384 2
385- 392 2
393- 400 2
401- 408 5
409- 416 3
417- 424 2
425- 432 1
433- 440 2
441- 448 4
457- 464 1
465- 472 1
473- 480 2
481- 488 1
489- 496 2
497- 504 5
505- 512 2
545- 552 1
577- 584 1
641- 648 2
825- 832 1
913- 920 1

Figure 3. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 3 of 4)

Chapter 1. Preparing your routine for debugging

17

Pool 6 size: 2048

Successful Get Heap requests: 1169- 1176 1
Successful Get Heap requests: 1185- 1192 1
Successful Get Heap requests: 1217- 1224 2
Successful Get Heap requests: 1257- 1264 1
Successful Get Heap requests: 1377- 1384 1
Successful Get Heap requests: 1401- 1408 1
Successful Get Heap requests: 1521- 1528 1
Successful Get Heap requests: 1537- 1544 1
Successful Get Heap requests: 1545- 1552 1
Successful Get Heap requests: 1569- 1576 1
Successful Get Heap requests: 1665- 1672 1
Successful Get Heap requests: 1761- 1768 1
Successful Get Heap requests: 1785- 1792 1
Successful Get Heap requests: 1929- 1936 1
Successful Get Heap requests: 1937- 1944 1
Successful Get Heap requests: 1953- 1960 1

Requests greater than the Targest cell size: 19

HeapPools Summary:
Cell Extent Cells Per Extents Maximum Cells In

Size Percent Extent Allocated Cells Used Use

8 10 204 1 6 0

32 10 81 1 4 1
128 10 24 1 13 4
256 10 12 2 19 4
1024 10 4 4 13 12
2048 10 4 1 3 2

Suggested Percentages for current Cell Sizes:
HEAPP(ON,8,1,32,1,128,6,256,16,1024,41,2048,19,0)
Suggested Cell Sizes:
HEAPP (ON,
88,,168,,232,,328,,416,,512,,
648,,1264,,1792,,2232,,2712,,2992,)
Largest number of threads concurrently active: 6
End of Storage Report

Figure 3. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 4 of 4)

The statistics for initial and incremental allocations of storage types that have a
corresponding run-time option differ from the run-time option settings when their
values have been rounded up by the implementation, or when allocations larger
than the amounts specified were required during execution. All of the following are
rounded up to an integral number of double-words:

* Initial STACK allocations

* Initial allocations of THREADSTACK

« Initial allocations of all types of heap

* Incremental allocations of all types of stack and heap

The run-time options should be tuned appropriately to avoid performance problems.
Refer to |z/OS Language Environment Programming Guidd for tips on tuning.

Stack storage statistics

Language Environment stack storage is managed at the thread level—each thread
has its own stack-type resources.

18 2/0S V1R5.0 Language Environment Debugging Guide

STACK, THREADSTACK, and LIBSTACK statistics for the

upward-growing stack

« Initial size — the actual size of the initial segment assigned to each thread. (If a
pthread-attributes-table is provided on the invocation of pthread-create, then the
stack size specified in the pthread-attributes-table will take precedence over the
STACK run-time option.)

* Increment size — the size of each incremental segment acquired, as determined
by the increment portion of the corresponding run-time option.

* Maximum used by all concurrent threads — the maximum amount allocated in
total at any one time by all concurrently executing threads.

» Largest used by any thread — the largest amount allocated ever by any single
thread.

* Number of segments allocated — the number of incremental segments allocated
by all threads.

* Number of segments freed — the number of incremental segments freed by all
threads.

The number of incremental segments freed could be less than the number allocated
if any of the segments were not freed individually during the life of the thread, but
rather were freed implicitly in the course of thread termination.

XPLINK statistics — XPLINK STACK and XPLINK THREADSTACK
statistics for the downward-growing stack
These sections of the storage report only apply if XPLINK is in effect.

* Initial size — the actual size of the initial segment assigned to each thread.

* Increment size — the size of each incremental segment acquired, as determined
by the increment portion of the corresponding run-time option.

* Maximum used by all concurrent threads — the maximum amount allocated in
total at any one time by all concurrently executing threads.

» Largest used by any thread — the largest amount allocated ever by any single
thread.

* Number of segments allocated — the number of incremental segments allocated
by all threads.

* Number of segments freed — the number of incremental segments freed by all
threads.

The number of incremental segments freed could be less than the number allocated
if any of the segments were not freed individually during the life of the thread, but
rather were freed implicitly in the course of thread termination.

Determining the applicable threads

If the application is not a multithreading or PL/I multitasking application, then the
STACK statistics are for the one and only thread that executed, and the
THREADSTACK statistics are all zero.

If the application is a multithreading or PL/I multitasking application, and
THREADSTACK(ON) was specified, then the STACK statistics are for the initial
thread (the IPT), and the THREADSTACK statistics are for the other threads.
However, if THREADSTACK(OFF) was specified, then the STACK statistics are for
all of the threads, initial and other.

Chapter 1. Preparing your routine for debugging 19

Allocating stack storage

Another type of stack, called the reserve stack, is allocated for each thread and
used to handle out-of-storage conditions. Its size is controlled by the 4th
subparameter of the STORAGE run-time option, but its usage is neither tracked nor
reported in the storage report.

In a single-threaded environment, Language Environment allocates the initial
segments for STACK, LIBSTACK and reserve stack using GETMAIN. The
LIBSTACK initial segment allocation is deferred until first use, except when
STACK(,,BELOW,,) is in effect. The reserve stack is allocated with STACK. In a
multi-threaded POSIX(ON) environment, allocation of stack storage for the initial
processing thread (IPT) is the same as the single-threaded environment. For
threads other than the IPT, the initial STACK (or THREADSTACK) segment and
reserve stack is allocated from ANYHEAP or BELOWHEAP, according to the
STACK (or THREADSTACK) location. The initial LIBSTACK segment allocation is
again deferred until first use, except when STACK(,,BELOW,,) or
THREADSTACK(ON,,,BELOW,,) is in effect. When a STACK, THREADSTACK, or
LIBSTACK overflow occurs on any thread, Language Environment obtains the new
segment using GETMAIN. The reserve stack does not tolerate overflow.

Heap storage statistics

Language Environment heap storage, other than what is explicitly defined using
THREADHEAP, is managed at the enclave level—each enclave has its own
heap-type resources, which are shared by the threads that execute within the
enclave. Heap storage defined using THREADHEAP is controlled at the thread
level.

HEAP, HEAP24, THREADHEAP, ANYHEAP, and BELOWHEAP
statistics

« Initial size—the default initial allocation, as specified by the corresponding
run-time option. Please note that for HEAP24, the initial size is the value of the
initsz24 of the HEAP option.

* Increment size—the minimum incremental allocation, as specified by the
corresponding run-time option. Please note that for HEAP24, the increment size
is the value of the incrsz24 of the HEAP option.

THREADHEAP statistics

* Maximum used by all concurrent threads—the maximum total amount used by all
concurrent threads at any one time.

» Largest used by any thread—the largest amount used by any single thread.

HEAP, HEAP24, ANYHEAP, BELOWHEAP, and additional heap
Statistics

» Total heap storage used—the largest total amount used by the enclave at any
one time.

HEAP, HEAP24, THREADHEAP, ANYHEAP, BELOWHEAP, and
additional heap statistics

» Successful Get Heap requests—the number of Get Heap requests.
» Successful Free Heap requests—the number of Free Heap requests.
* Number of segments allocated—the number of incremental segments allocated.

* Number of segments freed—the number of incremental segments individually
freed.

20 z/0OS V1R5.0 Language Environment Debugging Guide

The number of Free Heap requests could be less than the number of Get Heap
requests if the pieces of heap storage acquired by individual Get Heap requests
were not freed individually, but rather were freed implicitly in the course of enclave
termination.

The number of incremental segments individually freed could be less than the
number allocated if the segments were not freed individually, but rather were freed
implicitly in the course of enclave termination.

These statistics, in all cases, specify totals for the whole enclave. For
THREADHEAP, they indicate the total across all threads in the enclave.

Additional heap statistics

Besides the fixed types of heap, additional types of heap can be created, each with
its own heap ID. You can create and discard these additional types of heap by
using the CEECRHP

» Successful Create Heap requests—the number of successful Create Heap
requests.

» Successful Discard Heap requests—the number of successful Discard Heap
requests.

The number of Discard Heap requests could be less than the number of Create
Heap requests if the special heaps allocated by individual Create Heap requests
were not freed individually, but rather were freed implicitly in the course of enclave
termination.

HeapPools storage statistics

The HEAPPOOLS run-time option (for C/C++ applications only) controls usage of
the heap pools storage algorithm at the enclave level. The heap pools algorithm
allows for the definition of one to twelve heap pools, each consisting of a number of
storage cells of a specified length. For further details regarding HeapPools storage
statistics in the storage report, see ['HeapPools Storage Statistics” on page 185,

Modifying condition handling behavior

Setting the condition handling behavior of your routine affects the response that
occurs when the routine encounters an error.

You can modify condition handling behavior in the following ways:

» Callable services

* Run-time options

» User-written condition handlers

* POSIX functions (used to specifically set signal actions and signal masks)

Language Environment callable services
You can use these callable services to modify condition handling:

CEE3ABD Terminates an enclave using an abend.

CEEMRCE Moves the resume cursor to an explicit location where resumption is to
occur after a condition has been handled.

CEEMRCR Moves the resume cursor relative to the current position of the handle
cursor.

CEE3CIB Returns a pointer to a condition information block (CIB) associated with a
given condition token. The CIB contains detailed information about the
condition.

Chapter 1. Preparing your routine for debugging 21

CEE3GRO Returns the offset of the location within the most current Language
Environment-conforming routine where a condition occurred.
CEE3SPM Specifies the settings of the routine mask. The routine mask controls:
» Fixed overflow
» Decimal overflow
» Exponent underflow
« Significance

You can use CEE3SPM to modify Language Environment hardware
conditions. Because such modifications can affect the behavior of your
routine, however, you should be careful when doing so.

CEE3SRP Sets a resume point within user application code to resume from a
Language Environment user condition handler.

Fortran programs cannot directly call Language Environment callable services. For
more information about callable services, see |zZ0S Language Environment
[Programming Referencel For more information about how to invoke callable
services from Fortran, see Language Environment Fortran Run-Time Migration
Guide .

Language Environment run-time options

These Language Environment run-time options can affect your routine’s condition
handling behavior:

ABPERC Specifies a system- or user-specified abend code that percolates
without further action while the Language Environment condition
handler is enabled. Normal condition handling activities are performed
for everything except the specified abend code. System abends are
specified as Shhh, where hhh is a hexadecimal system abend code.

User abends are specified as Udddd, where dddd is a decimal user
abend code. Any other 4-character EBCDIC string, such as NONE, that
is not of the form Shhh can also be specified as a user-specified
abend code. You can specify only one abend code with this option.
This option assumes the use of TRAP(ON). ABPERC is not supported
in CICS.

Language Environment ignores ABPERC(0Cx). No abend is percolated
and Language Environment condition handling semantics are in effect.

CHECK Specifies that checking errors within an application are detected. The
Language Environment-conforming languages can define error
checking differently.

DEPTHCONDLMT Limits the extent to which synchronous conditions can be nested in a
user-written condition handler. (Asynchronous signals do not affect
DEPTHCONDLMT.) For example, if you specify 5, the initial condition
and four nested conditions are processed. If the limit is exceeded, the
application terminates with abend code 4091 and reason code 21
(X'15".

ERRCOUNT Specifies the number of synchronous conditions of severity 2, 3, and 4
that are tolerated before the enclave terminates abnormally.
(Asynchronous signals do not affect ERRCOUNT.) If you specify 0 an
unlimited number of conditions is tolerated.

INTERRUPT Causes attentions recognized by the host operating system to be
passed to and recognized by Language Environment after the
environment has been initialized.

22 7/0S V1R5.0 Language Environment Debugging Guide

TERMTHDACT

TRAP(ON)

TRAP(OFF)

USRHDLR

XUFLOW

Sets the level of information that is produced when a condition of

severity 2 or greater remains unhandled within the enclave. There are

five possible parameter settings for different levels of information:

* QUIET for no information

* MSG for message only

* TRACE for message and a traceback

» DUMP for message, traceback, and Language Environment dump

* UAONLY for message and a system dump of the user address
space

» UATRACE for message, Language Environment dump with
traceback information only, and a system dump of the user address
space

» UADUMP for message, traceback, Language Environment dump,
and system dump

» UAIMM for a system dump of the user address space of the original
abend or program interrupt prior to the Language Environment
condition manager processing the condition.

Fully enables the Language Environment condition handler. This
causes the Language Environment condition handler to intercept error
conditions and routine interrupts.

When TRAP(ON, NOSPIE) is specified, Language Environment
handles all program interrupts and abends through an ESTAE. Use this
feature when you do not want Language Environment to issue an
ESPIE macro.

During normal operation, you should use TRAP(ON) when running your
applications.

Disables the Language Environment condition handler from handling
abends and program checks/interrupts. ESPIE is not issued with
TRAP(OFF), it is still possible to invoke the condition handler through
the CEESGL callable service and pass conditions to registered
user-written condition handlers.

Specify TRAP(OFF) when you do not want Language Environment to
issue an ESTAE or an ESPIE.

When TRAP(OFF), TRAP(OFF,SPIE), or TRAP(OFF,NOSPIE) is
specified and either a program interrupt or abend occurs, the user exit
for termination is ignored.

TRAP(OFF) can cause several unexpected side effects. For further
information, see the TRAP run-time option in |z/OS Languaga
|Environment Programming Referencel

Specifies the behavior of two user-written condition handlers. The first
handler specified will be registered at stack frame 0. The second
handler specified will be registered before any other user-written
condition handlers, once the handler is enabled by a condition.

When you specify USRHDLR(lastname,supername), lastname gets
control at stack frame 0. Supername will get get control first, before any
user-written condition handlers but after supername has gone through
the enablement phase, when a condition occurs.

Specifies whether an exponent underflow causes a routine interrupt.

Customizing condition handlers

User-written condition handlers permit you to customize condition handling for
certain conditions. You can register a user-written condition handler for the current

Chapter 1. Preparing your routine for debugging 23

stack frame by using the CEEHDLR callable service. You can use the Language
Environment USRHDLR run-time option to register a user-written condition handler
for stack frame 0. You can also use USRHDLR to register a user-written condition
handler before any other user condition handlers.

When the Language Environment condition manager encounters the condition, it
requests that the condition handler associated with the current stack frame handle
the condition. If the condition is not handled, the Language Environment condition
manager percolates the condition to the next (earlier) stack frame, and so forth to
earlier stack frames until the condition has been handled. Conditions that remain
unhandled after the first (earliest) stack frame has been reached are presented to
the Language Environment condition handler. One of the following Language
Environment default actions is then taken, depending on the severity of the
condition:

* Resume

* Percolate

* Promote

* Fix-up and resume

For more information about user-written condition handlers and the Language
Environment condition manager, see|z/OS Language Environment Programming|

[Guide|

Invoking the assembler user exit

For debugging purposes, the CEEBXITA assembler user exit can be invoked during:
* Enclave initialization
* Enclave termination
* Process termination

The functions of the CEEBXITA user exit depend on when the user exit is invoked
and whether it is application-specific or installation-wide. Application-specific user
exits must be linked with the application load module and run only when that
application runs. Installation-wide user exits must be linked with the Language
Environment initialization/termination library routines and run with all Language
Environment library routines. Because an application-specific user exit has priority
over any installation-wide user exit, you can customize a user exit for a particular
application without affecting the user exit for any other applications.

At enclave initialization, the CEEBXITA user exit runs prior to the enclave
establishment. Thus you can modify the environment in which your application runs
in the following ways:

* Specify run-time options

* Allocate data sets/files in the user exit

» List abend codes to be passed to the operating system

» Check the values of routine arguments

At enclave termination, the CEEBXITA user exit runs prior to the termination activity.
Thus, you can request an abend and perform specified actions based on received
return and reason codes. (This does not apply when Language Environment
terminates with an abend.)

At process termination, the CEEBXITA user exit runs after the enclave termination
activity completes. Thus you can request an abend and deallocate files.

24 7/0S V1R5.0 Language Environment Debugging Guide

The assembler user exit must have an entry point of CEEBXITA, must be reentrant,
and must be capable of running in AMODE(ANY) and RMODE(ANY).

You can use the assembler user exit to establish enclave termination behavior for
an enclave ending with an unhandled condition of severity 2 or greater in the
following ways:

» If you do not request an abend in the assembler user exit for the enclave

termination call, Language Environment honors the setting of the ABTERMENC
option to determine how to end the enclave.

» If you request an abend in the assembler user exit for the enclave termination
call, Language Environment issues an abend to end the enclave.

For more information on the assembler user exit, see |zZOS Language Environment
|Programming Guide,

Establishing enclave termination behavior for unhandled conditions

To establish enclave termination behavior when an unhandled condition of severity
2 or greater occurs, use one of the following methods:

+ The assembler user exit (see [‘Invoking the assembler user exit’ on page 24|and
[z/0S Language Environment Programming Guide)

+ POSIX signal default action (see|z/0S Language Environment Programmingj

* The ABTERMENC run-time option (discussed below)

The ABTERMENC run-time option sets the enclave termination behavior for an
enclave ending with an unhandled condition of severity 2 or greater.

If you specify the IBM-supplied default suboption ABEND, Language Environment
issues an abend to end the enclave regardless of the setting of the
CEEAUE_ABND flag. Additionally, the assembler user exit can alter the abend
code, abend reason code, abend dump attribute, and the abend task/step attribute.
For more information on using ABTERMENC, see [z/OS Language Environment
Programming Reference, and for more information on the assembler user exit, see
2/0OS Language Environment Programming Guide,

If you specify the RETCODE suboption, Language Environment uses the
CEEAUE_ABND flag value set by the assembler user exit (which is called for
enclave termination) to determine whether or not to issue an abend to end the
enclave when an unhandled condition of severity 2 or greater occurs.

Using messages in your routine

You can create messages and use them in your routine to indicate the status and
progress of the routine during run time, and to display variable values. The process
of creating messages and using them requires that you create a message source
file, and convert the source file into loadable code for use in your routine.

You can use the Language Environment callable service CEEMOUT to direct
user-created message output to the Language Environment message file. To direct
the message output to another destination, use the Language Environment
MSGFILE run-time option to specify the ddname of the file.

When multiple Language Environment environments are running in the same
address space and the same MSGFILE ddname is specified, writing contention can

Chapter 1. Preparing your routine for debugging 25

occur. To avoid contention, use the MSGFILE suboption ENQ. ENQ tells Language
Environment to perform serialization around writes to the MSGFILE ddname
specified which eliminates writing contention. Writing contention can also be
eliminated by specifying unique MSGFILE ddnames.

Each Language Environment-conforming language also provides ways to display
both user-created and run-time messages. (For an explanation of Language
Environment run-time messages, see f‘lnterpreting run-time messages” on page 32.b

The following sections discuss how to create messages in each of the HLLs. For a
more detailed explanation of how to create messages and use them in C, C++,
COBOL, Fortran, or PL/I routines, see|z/0OS Language Environment Programming

Guicd,

C/C++

For C/C++ routines, output from the printf function is directed to stdout, which is
associated with SYSPRINT. All C/C++ run-time messages and perror() messages are
directed to stderr. stderr corresponds to the ddname associated with the
Language Environment MSGFILE run-time option. The destination of the printf
function output can be changed by using the redirection 1>&2 at routine invocation
to redirect stdout to the stderr destination. Both streams can be controlled by the
MSGFILE run-time option.

COBOL

For COBOL programs, you can use the DISPLAY statement to display messages.
Output from the DISPLAY statement is directed to SYSOUT. SYSOUT is the
IBM-supplied default for the Language Environment message file. The OUTDD
compiler option can be used to change the destination of the DISPLAY messages.

Fortran

For Fortran programs, run-time messages, output written to the print unit, and other
output (such as output from the SDUMP callable service) are directed to the file
specified by the MSGFILE run-time option. If the print unit is different than the error
message unit (PRTUNIT and ERRUNIT run-time options have different values),
however, output from the PRINT statement won’t be directed to the Language
Environment message file.

PL/

Under PL/I, run-time messages are directed to the file specified in the Language
Environment MSGFILE run-time option, instead of the PL/I SYSPRINT STREAM
PRINT file. User-specified output is still directed to the PL/I SYSPRINT STREAM
PRINT file. To direct this output to the Language Environment MSGFILE file, specify
the run-time option MSGFILE(SYSPRINT).

Using condition information

If a condition that might require attention occurs while an application is running,
Language Environment builds a condition token. The condition token contains 12
bytes (96 bits) of information about the condition that Language Environment or
your routines can use to respond appropriately. Each condition is associated with a
single Language Environment run-time message.

You can use this condition information in two primary ways:

26 z/0OS V1R5.0 Language Environment Debugging Guide

» To specify the feedback code parameter when calling Language Environment
services (see [‘Using the feedback code parameter”).

+ To code a symbolic feedback code in a user-written condition handler (see
[the symbolic feedback code” on page 28).

Using the feedback code parameter

The feedback code is an optional parameter of the Language Environment callable
services. (For COBOL/370 programs, you must provide the fc parameter in each
call to a Language Environment callable service. For C/C++, Enterprise COBOL for
z/OS and OS/390, COBOL for OS/390 & VM, COBOL for MVS & VM, and PL/I
routines, this parameter is optional. For more information about fc and condition
tokens, see|z/OS Language Environment Programming Guide})

When you provide the feedback code (fc) parameter, the callable service in which
the condition occurs sets the feedback code to a specific value called a condition
token.

The condition token does not apply to asynchronous signals. For a discussion of
the distinctions between synchronous signals and asynchronous signals with
POSIX(ON), see|z/OS Language Environment Programming Guidd,.

When you do not provide the fc parameter, any nonzero condition is signaled and
processed by Language Environment condition handling routines. If you have
registered a user-written condition handler, Language Environment passes control
to the handler, which determines the next action to take. If the condition remains
unhandled, Language Environment writes a message to the Language Environment
message file. The message is the translation of the condition token into English (or
another supported national language).

Language Environment provides callable services that can be used to convert
condition tokens to routine variables, messages, or signaled conditions. The
following table lists these callable services and their functions.

CEEMSG Transforms the condition token into a message and writes the message to the
message file.

CEEMGET Transforms the condition token into a message and stores the message in a
buffer.

CEEDCOD Decodes the condition token; that is, separates it into distinct user-supplied
variables. Also, if a language does not support structures, CEEDCOD provides
direct access to the token.

CEESGL Signals the condition. This passes control to any registered user-written
condition handlers. If a user-written condition handler does not exist, or the
condition is not handled, Language Environment by default writes the
corresponding message to the message file and terminates the routine for
severity 2 or higher. For severity 0 and 1, Language Environment continues
without writing a message. COBOL, however, issues severity 1 messages
before continuing. CEESGL can signal a POSIX condition. For details, see
[z/0S Language Environment Programming Guide}

There are two types of condition tokens. Case 1 condition tokens contain condition
information, including the Language Environment message number. All Language
Environment callable services and most application routines use case 1 condition
tokens. Case 2 condition tokens contain condition information and a user-specified
class and cause code. Application routines, user-written condition handlers,
assembler user exits, and some operating systems can use case 2 condition
tokens.

Chapter 1. Preparing your routine for debugging 27

0 - 31]132-33 |34 - 36|37 - 39 (40 - 63 |64 - 95
S

Condition_ID Case | Severity | Control Facility_ID
Number | Number | Code

For Case 1 condition tokens, For Case 2 condition tokens,
Condition_ID is: Condition_ID is:
0-15 16 - 31 0-15 16 - 31
Severity Message Class Cause
Number Number Code Code

A symbolic feedback code represents the first 8 bytes of a condition
token. It contains the Condition_ID, Case Number, Severity Number,
Control Code, and Facility_ID, whose bit offsets are indicated.

Figure 4. Language Environment Condition Token

For example, in the condition token: X'0003032D 59C3C5C5 00000000’
» X'0003' is severity.

» X'032D' is message number 813.

* X'59' are hexadecimal flags for case, severity, and control.

» X'C3C5C5' is the CEE facility ID.

« X'00000000' is the ISI. (In this case, no ISI was provided.)

If a Language Environment traceback or dump is generated while a condition token
is being processed or when a condition exists, Language Environment writes the
run-time message to the condition section of the traceback or dump. If a condition
is detected when a callable service is invoked without a feedback code, the
condition token is passed to the Language Environment condition manager. The
condition manager polls active condition handlers for a response. If a condition of
severity 0 or 1 remains unhandled, Language Environment resumes without issuing
a message. Language Environment does issue messages, however, for COBOL
severity 1 conditions. For unhandled conditions of severity 2 or greater, Language
Environment issues a message and terminates. For a list of Language Environment
run-time messages and corrective information, see |zZOS Language Environmen{
[Run-Time Messages

If a second condition is raised while Language Environment is attempting to handle
a condition, the message CEE0374C CONDITION = <message no.> is displayed using
a write-to-operator (WTO). The message number in the CEE0374C message
indicates the original condition that was being handled when the second condition
was raised. This can happen when a critical error is signaled (for example, when
internal control blocks are damaged).

If the output for this error message appears several times in sequence, the
conditions appear in order of occurrence. Correcting the earliest condition can
cause your application to run successfully.

Using the symbolic feedback code

The symbolic feedback code represents the first 8 bytes of a 12-byte condition
token. You can think of the symbolic feedback code as the nickname for a

28 2z/0S V1R5.0 Language Environment Debugging Guide

condition. As such, the symbolic feedback code can be used in user-written
condition handlers to screen for a given condition, even if it occurs at different
locations in an application.

For more details on symbolic feedback codes, see |z70OS Language Environmenf
|Programming Guide,

Chapter 1. Preparing your routine for debugging 29

30 z/0S V1R5.0 Language Environment Debugging Guide

Chapter 2. Classifying errors

This chapter describes errors that commonly occur in Language Environment
routines. It also explains how to use run-time messages and abend codes to obtain
information about errors in your routine.

Identifying problems in routines

The following sections describe how you can identify errors in Language
Environment routines. Included are common error symptoms and solutions.

Language Environment module names

You can identify Language Environment-supplied module elements by any of the
following three-character prefixes:

* CEE (Language Environment)

* EDC (C/C++)

* FOR (Fortran)

« IBM (PL/I)

* 1GZ (COBOL)

Module elements or text files with other prefixes are not part of the Language
Environment product.

Common errors in routines
These common errors have simple solutions:

» If you do not have enough virtual storage, increase your region size or decrease
your storage usage (stack size) by using the storage-related run-time options and
callable services. (See [‘Controlling storage allocation” on page 12| for information
about using storage in routines.)

» If you do not have enough disk space, increase your disk allocation.

» If executable files are not available, check your executable library to ensure that
they are defined. For example, check your STEPLIB or JOBLIB definitions.

If your error is not caused by any of the items listed above, examine your routine or
routines for changes since the last successful run. If there have been changes,
review these changes for errors that might be causing the problem. One way to
isolate the problem is to branch around or comment out recent changes and rerun
the routine. If the run is successful, the error can be narrowed to the scope of the
changes.

Duplicate names shared between Fortran routines and C library routines can
produce unexpected results. Language Environment provides several cataloged
procedures to properly resolve duplicate names. For more information on how to
avoid name conflicts, see [z70S Language Environment Programming Guidel

Changes in optimization levels, addressing modes, and input/output file formats can
also cause unanticipated problems in your routine.

In most cases, generated condition tokens or run-time messages point to the nature
of the error. The run-time messages offer the most efficient corrective action. To
help you analyze errors and determine the most useful method to fix the problem,
|Tab|e 3 on page 32| lists common error symptoms, possible causes, and
programmer responses.

© Copyright IBM Corp. 1991, 2004 31

Table 3. Common Error Symptoms, Possible Causes, and Programmer Responses

Error Symptom

Possible Cause

Programmer Response

Numbered run-time message
appears

Condition raised in routine

For any messages you receive, read the
Programmer Response. For information about
message structure, see [‘Interpreting run-time|

messages”| below.

User abend code < 4000

a) A non-Language Environment
abend occurred

b) The assembler user exit requested
an abend for an unhandled condition
of severity =2

See the Language Environment abend codes
in [z/0S Language Environment Run-Time|
|Message§|r Check for a subsystem-generated
abend or a user-specified abend.

User abend code = 4000

a) Language Environment detected an
error and could not proceed

b) An unhandled software-raised
condition occurred and
ABTERMENC(ABEND) was in effect

c) The assembler user exit requested
an abend for an unhandled condition
of severity 4

For any abends you receive, read the
appropriate explanation listed in the abend
codes section of |z70S Language Environment
|Run-Time Messaged

System abend with
TRAP(OFF)

Cause depends on type of
malfunction

Respond appropriately. Refer to the
messages and codes book of the operating
system.

System abend with TRAP(ON)

System-detected error

Refer to the messages and codes book of the
operating system.

No response (wait/loop)

Application logic failure

Check routine logic. Ensure ERRCOUNT and
DEPTHCONDLMT run-time options are set to
a nonzero value.

Unexpected message
(message received was not
from most recent service)

Condition caused by something
related to current service

Generate a traceback using CEE3DMP.

Incorrect output

Incorrect file definitions, storage
overlay, incorrect routine mask setting,
references to uninitialized variables,
data input errors, or application
routine logic error

Correct the appropriate parameters.

No output

Incorrect ddname, file definitions, or
message file setting

Correct the appropriate parameters.

Nonzero return code from
enclave

Unhandled condition of severity 2, 3,
or 4, or the return code was issued by
the application routine

Check the Language Environment message
file for run-time message.

Unexpected output

Conflicting library module names

Refer to the name conflict resolution steps
outlined in|z/OS Language Environmen
|Programming Guidel

Interpreting run-time messages

The first step in debugging your routine is to look up any run-time messages. To
find run-time messages, check the message file:

* On z/OS, run-time messages are written by default to ddname SYSOUT. If
SYSOUT is not specified, then the messages are written to SYSOUT=".

* On CICS, the run-time messages are written to the CESE transient data QUEUE.

32 2z/0S V1R5.0 Language Environment Debugging Guide

The default message file ddname can be changed by using the MSGFILE run-time
option. For information about displaying run-time messages for C/C++, COBOL,
Fortran, or PL/I routines, see [z/0S Language Environment Programming Guide,

Run-time messages provide users with additional information about a condition, and
possible solutions for any errors that occurred. They can be issued by Language
Environment common routines or language-specific run-time routines and contain a
message prefix, message number, severity code, and descriptive text.

In the following example Language Environment message:

CEE3206S The system detected a specification exception.

* The message prefix is CEE.

* The message number is 3206.

* The severity code is S.

* The message text is “The system detected a specification exception”.

Language Environment messages can appear even though you made no explicit
calls to Language Environment services. C/C++, COBOL, and PL/I run-time library
routines commonly use the Language Environment services. This is why you can
see Language Environment messages even when the application routine does not
directly call common run-time services.

Message prefix

The message prefix indicates the Language Environment component that generated
the message. The message prefix is the first three characters of the message
number and is also the facility ID in the condition token. See the following table for
more information about Language Environment run-time messages.

Message Prefix Language Environment Component
CEE Common run time

EDC C/C++ run time

FOR Fortran run time

IBM PL/I run time

1GZ COBOL run time

The messages for the various components can be found in[z/OS Languagd
|Environment Run-Time Messages.

Message number

Severity code

[Guide|

The message number is the 4-digit number following the message prefix. Leading
zeros are inserted if the message number is less than four digits. It identifies the
condition raised and references additional condition and programmer response
information.

The severity code is the letter following the message number and indicates the level
of attention called for by the condition. Messages with severity of | are informational
messages and do not usually require any corrective action. In general, if more than
one run-time message appears, the first noninformational message indicates the
problem. For a complete list of severity codes, severity values, condition
information, and default actions, see|z/OS Language Environment Programming|

Chapter 2. Classifying errors 33

Message text
The message text provides a brief explanation of the condition.

Understanding abend codes

Under Language Environment, abnormal terminations generate abend codes. There
are two types of abend codes: 1) user (Language Environment and user-specified)
abends and 2) system abends. User abends follow the format of Udddd, where
dddd is a decimal user abend code. System abends follow the format of Shhh,
where hhh is a hexadecimal abend code. Language Environment abend codes are
usually in the range of 4000 to 4095. However, some subsystem abend codes can
also fall in this range. User-specified abends use the range of 0 to 3999.

Example abend codes are:

User (Language Environment) abend code:U4041
User-specified abend code:U0005
System abend code:S80A

The Language Environment callable service CEE3ABD terminates your application
with an abend. You can set the clean-up parameter value to determine how the
abend is processed and how Language Environment handles the raised condition.
For more information about CEE3ABD and clean-up, see|z/0OS Languagé
|Environment Programming Reference

You can specify the ABTERMENC run-time option to determine what action is taken
when an unhandled condition of severity 2 or greater occurs. For more information
on ABTERMENC, see [‘Establishing enclave termination behavior for unhandled
conditions” on page 25,[as well as|z/OS Language Environment Programming|

Referencgl

User abends

If you receive a Language Environment abend code, see|z/OS Language
|Environment Run-Time Messageq for a list of abend codes, error descriptions, and
programmer responses.

User abends, such as Language Environment 4xxx abends or abends raised by a
call to the CEE3ABD service, can cause the generation of a system dump. Although
system dumps are sometimes required for debugging complex error situations, it is
usually better to generate a Language Environment-formatted dump. To request a
Language Environment dump whenever an unhandled condition is raised, specify
both TRAP(ON) and TERMTHDACT(DUMP) run-time options.

Your routine can also produce a Language Environment dump at any time by calling
the CEE3DMP callable service (see [‘Generating a Language Environment dump|
with CEE3DMP” on page 37). The TRAP(ON) run-time option causes the Language
Environment condition handler to attempt to handle the system abend. For a
detailed explanation of the run-time options and callable services discussed in this
section, see [z/0S Language Environment Programming Reference,

System abends

If you receive a system abend code, look up the code and the corresponding
information in the publications for the system you are using.

When a system abend occurs, the operating system can generate a system dump.
System dumps are written to ddname SYSMDUMP, SYSABEND, or SYSUDUMP.

34 z/0S V1R5.0 Language Environment Debugging Guide

System dumps show the memory state at the time of the condition. See
[‘Generating a system dump” on page 77|for more information about system dumps.

Chapter 2. Classifying errors 35

36 z/0S V1R5.0 Language Environment Debugging Guide

Chapter 3. Using Language Environment debugging facilities

This chapter describes methods of debugging routines in Language Environment.
Currently, most problems in Language Environment and member language routines
can be determined through the use of a debugging tool or through information
provided in the Language Environment dump.

Debug tool

Debug tools are designed to help you detect errors early in your routine. IBM offers
Debug Tool, a comprehensive compile, edit, and debug product that is provided with
the C/C++, Enterprise COBOL for z/OS and 0S/390, COBOL for OS/390 & VM,
COBOL for MVS & VM, PL/I for MVS & VM, VisualAge PL/I, and VisualAge for Java
compiler products.

You can use the IBM Debug Tool to examine, monitor, and control how your
routines run, and debug your routines interactively or in batch mode. Debug Tool
also provides facilities for setting breakpoints and altering the contents and values
of variables. Language Environment run-time options can be used with Debug Tool
to debug or analyze your routine. Refer to the Debug Tool publications for a
detailed explanation of how to invoke and run Debug Tool.

You can also use dbx to debug Language Environment applications, including
C/C++ programs. [z/0S UNIX System Services Command Reference has
information on dbx subcommands, while [zZOS UNIX System Services Programming
contains usage information.

Language Environment dump service, CEE3DMP

The following sections provide information about using the Language Environment
dump service, and describe the contents of the Language Environment dump.

There are three ways to invoke the Language Environment dump service:
« CEES3DMP callable service

* TERMTHDACT run-time option

* HLL-specific functions

Generating a Language Environment dump with CEE3DMP

The CEE3DMP callable service generates a dump of the run-time environment for
Language Environment and the member language libraries at the point of the
CEE3DMP call. You can call CEE3DMP directly from an application routine.

Depending on the CEE3DMP options you specify, the dump can contain information
about conditions, tracebacks, variables, control blocks, stack and heap storage, file
status and attributes, and language-specific information.

All output from CEE3DMP is written to the default ddname CEEDUMP. CEEDUMP,
by default, sends the output to the SDSF output queue. You can direct the output
from the CEEDUMP to a specific sysout class by using the environment variable,
_CEE_DMPTARG=SYSOUT(x), where x is the output class.

© Copyright IBM Corp. 1991, 2004 37

Under z/OS UNIX, if the application is running in an address-space created as a
result of a fork(), spawn(), spawnp(), vfork(), or one of the exec family of
functions, then the CEEDUMP is placed in the HFS in one of the following
directories in the specified order:

1. the directory found in environment variable _CEE_DMPTARG, if found

2. the current working directory, if this is not the root directory (/), and the directory
is writable

3. the directory found in environment variable TMPDIR (an environment variable
that indicates the location of a temporary directory if it is not /tmp)

4. the /tmp directory.

The syntax for CEE3DMP is:

Syntax

»»—CEE3DMP—(—title—,—options—,—fc—) ><

title
An 80-byte fixed-length character string that contains a title that is printed at the
top of each page of the dump.

options
A 255-byte fixed-length character string that contains options describing the
type, format, and destination of dump information. The options are declared as
a string of keywords separated by blanks or commas. Some options also have
suboptions that follow the option keyword, and are contained in parentheses.
The last option declaration is honored if there is a conflict between it and any
preceding options.

fc (output)
A 12-byte feedback token code that indicates the result of a call to CEE3DMP. If
specified as an argument, feedback information, in the form of a condition
token, is returned to the calling routine. If not specified, and the requested
operation was not successfully completed, the condition is signaled to the
condition manager.

Following is a list of CEE3DMP options and related information:
Table 4. CEE3DMP Options

Dump Options Abbreviation Action Taken

ENCLAVE(ALL) ENCL Dumps all enclaves associated with the
current process. (In ILC applications in
which a C/C++ routine calls another
member language routine, and that
routine in turn calls CEESDMP,
traceback information for the C/C++
routine is not provided in the dump.)
This is the default setting for ENCLAVE.

ENCLAVE(CURRENT) ENCL(CUR) Dumps the current enclave.

ENCLAVE(n) ENCL(n) Dumps a fixed number of enclaves,
indicated by n.

38 z/0S V1R5.0 Language Environment Debugging Guide

Table 4. CEE3DMP Options (continued)

Dump Options

Abbreviation

Action Taken

THREAD(ALL)

THR(ALL)

Dumps all threads in this enclave
(including in a PL/I multitasking
environment).

THREAD(CURRENT)

THR(CUR)

Dumps the current thread in this
enclave.

TRACEBACK

TRACE

Includes a traceback of all active
routines. The traceback shows transfer
of control from either calls or exceptions.
Calls include PL/I transfers of control
from BEGIN-END blocks or ON-units.

NOTRACEBACK

NOTRACE

Does not include a traceback of all
active routines.

FILES

FILE

Includes attributes of all open files. File
control blocks are included when the
BLOCKS option is also specified. File
buffers are included when the
STORAGE option is specified.

NOFILES

NOFILE

Does not include file attributes.

VARIABLES

VAR

Includes a symbolic dump of all
variables, arguments, and registers.

NOVARIABLES

NOVAR

Does not include variables, arguments,
and registers.

BLOCKS

BLOCK

Dumps control blocks from Language
Environment and member language
libraries. Global control blocks, as well
as control blocks associated with
routines on the call chain, are printed.
Control blocks are printed for the routine
that called CEE3DMP. The dump
proceeds up the call chain for the
number of routines specified by the
STACKFRAME option (see below).
Control blocks for files are also dumped
if the FILES option was specified. See
the FILES option above for more
information. If the TRACE run-time
option is set to ON, the trace table is
dumped if BLOCKS is specified. If the
Heap Storage Diagnostics report is
requested via the HEAPCHK run-time
option, the report is displayed when
BLOCKS is specified.

NOBLOCKS

NOBLOCK

Does not include control blocks.

STORAGE

STOR

Dumps the storage used by the routine.
The number of routines dumped is
controlled by the STACKFRAME option.

NOSTORAGE

NOSTOR

Suppresses storage dumps.

STACKFRAME(ALL)

SF(ALL)

Dumps all stack frames from the call
chain. This is the default setting for
STACKFRAME.

Chapter 3. Using Language Environment debugging facilities 39

Table 4. CEE3DMP Options (continued)

Dump Options

Abbreviation

Action Taken

STACKFRAME(n)

SF(n)

Dumps a fixed number of stack frames,
indicated by n, from the call chain. The
specific information dumped for each
stack frame depends on the
VARIABLES, BLOCK, and STORAGE
options declarations. The first stack
frame dumped is the caller of
CEE3DMP, followed by its caller, and
proceeding backward up the call chain.

PAGESIZE(n)

PAGE(n)

Specifies the number of lines on each
page of the dump.

FNAME(s)

FNAME(s)

Specifies the ddname of the file to which
the dump is written.

CONDITION

COND

Dumps condition information for each
condition active on the call chain.

NOCONDITION

NOCOND

For each condition active on the call
chain, does not dump condition
information.

ENTRY

ENT

Includes a description of the program
unit that called CEE3DMP and the
registers on entry to CEE3DMP.

NOENTRY

NOENT

Does not include a description of the
program unit that called CEE3DMP or
registers on entry to CEE3DMP.

GENOPTS

GENO

Generate a run-time options report in
the dump output. This will be the default
if an unhandled condition occurs, and a
CEEDUMP is generated due to the
setting of the TERMTHDACT run-time
option setting.

NOGENOPTS

NOGENO

Do not generate a run-time options
report in the dump output.
NOGENOPTS is the default for
user-called dumps.

REGSTOR(reg_stor_amount)

REGST(reg_
stor_amount)

Controls the amount of storage to be
dumped around registers. Default is 96
bytes. Specify REGSTOR(0) if no
storage around registers is required.

Note: On CICS, only ENCLAVE(CURRENT) and ENCLAVE(1) settings are supported.

The IBM-supplied default settings for CEE3DMP are:

ENCLAVE (ALL) TRACEBACK

THREAD (CURRENT) FILES VARIABLES NOBLOCKS NOSTORAGE
STACKFRAME (ALL) PAGESIZE(60) FNAME(CEEDUMP)
CONDITION ENTRY NOGENOPTS REGSTOR(96)

For additional information about the CEE3DMP callable service and dump options,

see [z/0S Language Environment Programming Referencel For an example of a
Language Environment dump, see [‘Understanding the Language Environmen

ldump” on page 45

40 z/0OS V1R5.0 Language Environment Debugging Guide

Generating a Language Environment dump with TERMTHDACT

The TERMTHDACT run-time option produces a dump during program checks,
abnormal terminations, or calls to the CEESGL service. You must use
TERMTHDACT(DUMP) in conjunction with TRAP(ON) to generate a Language
Environment dump.

You can use TERMTHDACT to produce a traceback, Language Environment dump,
or user address space when a thread ends abnormally because of an unhandled
condition of severity 2 or greater. If this is the last thread in the process, the
enclave goes away. A thread terminating in a non-POSIX environment is analogous
to an enclave terminating because Language Environment Version 1 supports only
single threads. For information on enclave termination, see |[z/0S Language|
|Environment Programming Guide}

The TERMTHDACT suboptions QUIET, MSG, TRACE, DUMP, UAONLY, UATRACE,

UADUMP, and UAIMM control the level of information available. Following are the
suboptions, the levels of information produced, and the destination of each.

Table 5. TERMTHDACT Suboptions, Level of Information, and Destinations

Suboption

Level of Information

Destination

QUIET

No information

No destination.

MSG

Message

Terminal or ddname specified in
MSGFILE run-time option.

TRACE

Message and Language Environment
dump containing only a traceback

Message goes to terminal or ddname
specified in MSGFILE run-time option.
Traceback goes to CEEDUMP file.

DUMP

Message and complete Language
Environment dump

Message goes to terminal or ddname
specified in MSGFILE run-time option.
Language Environment dump goes to
CEEDUMP file.

UAONLY

SYSMDUMP, SYSABEND dump, or
SYSUDUMP depending on the DD
card used in the JCL in z/OS. In CICS,
a transaction dump is created. In
non-CICS you will get a system dump
of your user address space if the
appropriate DD statement is used.
Note: A Language Environment dump
is not generated.

Language Environment generates a
U4039 abend which allows a system
dump of the user address space to be
generated. For z/OS, the system
dump is written to the ddname
specified; for CICS the transaction
dump goes to DFHDMPA or the
DFHDMPB data set.

UATRACE

Message, Language Environment
dump containing only a traceback, and
a system dump of the user address
space

Message goes to terminal or ddname
specified in MSGFILE run-time option.
Traceback goes to CEEDUMP file.
Language Environment generates a
U4039 abend which allows a system
dump of the user address space to be
generated. For z/OS, the system
dump is written to the ddname
specified; for CICS the transaction
dump goes to DFHDMPA or the
DFHDMPB data set.

Chapter 3. Using Language Environment debugging facilities 41

Table 5. TERMTHDACT Suboptions, Level of Information, and Destinations (continued)

Suboption | Level of Information Destination
UADUMP Message, Language Environment Message goes to terminal or ddname
dump, and SYSMDUMP, SYSABEND | specified in MSGFILE run-time option.
dump, or SYSUDUMP depending on | Language Environment dump goes to
the DD card used in the JCL in z/OS. | CEEDUMP file. Language
In CICS, a transaction dump is Environment generates a U4039
created. abend which allows a system dump of
the user address space to be
generated. For z/OS, the system
dump is written to the ddname
specified; for CICS the transaction
dump goes to DFHDMPA or the
DFHDMPB data set.
UAIMM Language Environment generates a Message goes to terminal or ddname

system dump of the original
abend/program interrupt of the user
address space. In CICS, a transaction
dump is created. In non-CICS you will
get a system dump of your user
address space if the appropriate DD
statement is used. After the dump is
taken by the operating system,
Language Environment condition
manager continues processing.

Note: Under CICS, UAIMM yields
UAONLY behavior. Under non-CICS,
TRAP(ON,NOSPIE) must be in effect.
When TRAP(ON,SPIE) is in effect,
UAIMM yields UAONLY behavior. For
software raised conditions or signals,
UAIMM behaves the same as
UAONLY.

specified in MSGFILE run-time option.
User address space dump goes to
ddname specified for z/OS; or a CICS
transaction dump goes to the
DFHDMPA or DFHDMPB data set.

The TRACE and UATRACE suboptions of TERMTHDACT use these dump options:

« ENCLAVE(ALL)
« NOENTRY

« CONDITION

« TRACEBACK
 THREAD(ALL)

« NOBLOCKS

- NOSTORAGE

- VARIABLES

- FILES

« STACKFRAME(ALL)
- PAGESIZE(60)
 FNAME(CEEDUMP)
- GENOPTS

- REGSTOR(96)

The DUMP and UADUMP suboptions of TERMTHDACT use these dump options:

« ENCLAVE(ALL)

« NOENTRY

- CONDITION

- TRACEBACK
 THREAD(CURRENT)

42 7/0S V1R5.0 Language Environment Debugging Guide

- BLOCKS

. STORAGE

« VARIABLES

. FILES

« STACKFRAME(ALL)
- PAGESIZE(60)

- FNAME(CEEDUMP)
- GENOPTS

- REGSTOR(96)

Although you can modify CEE3DMP options, you cannot change options for a
traceback or dump produced by TERMTHDACT.

Considerations for setting TERMTHDACT options

The output of TERMTHDACT may vary depending upon which languages and
subsystems are processing the request. This section describes the considerations
associated with issuing the TERMTHDACT suboptions.

« COBOL Considerations

The following TERMTHDACT suboptions for COBOL are recommended,
UAONLY, UATRACE, and UADUMP. A system dump will always be generated
when one of these suboptions is specified.

¢ PL/I Considerations

After a normal return from a PL/I ERROR ON-unit, or from a PL/I FINISH
ON-unit, Language Environment considers the condition unhandled. If a
GOTO is not performed and the resume cursor is not moved, then the thread
terminates. The TERMTHDACT setting guides the amount of information that
is produced, so the message is not presented twice.

e PL/I MTF Considerations

TERMTHDACT applies to a task that terminates abnormally due to an
unhandled condition of severity 2 or higher that is percolated beyond the initial
routine’s stack frame. All active subtasks that were created from the incurring
task will terminate abnormally, but the enclave will continue to run.

e 7/OS UNIX Considerations

The TERMTHDACT option applies when a thread terminates abnormally.
Abnormal termination of a single thread causes termination of the entire
enclave. If an unhandled condition of severity 2 or higher percolates beyond
the first routine’s stack frame the enclave terminates abnormally.

If an enclave terminates due to a POSIX default signal action, then
TERMTHDACT applies to conditions that result from software signals,
program checks, or abends.

If running under a shell and Language Environment generates a system
dump, then a core dump is generated to a file based on the kernel
environment variable, _BPXK_MDUMP.

* CICS Considerations

TERMTHDACT output is written either to a transient data queue named
CESE, or to the CICS transaction dump, depending on the setting of the
CESEICICSDDS suboption of the TERMTHDACT run-time option.|Table 6 on

page 44{shows the behavior of CESEICICSDDS when they are used with the

other suboptions of TERMTHDACT.

Since Language Environment does not own the ESTAE, the suboption UAIMM
will be treated as UAONLY.

All associated Language Environment dumps will be suppressed if termination
processing is the result of an EXEC CICS ABEND with NODUMP.

Chapter 3. Using Language Environment debugging facilities 43

44

Table 6. Condition Handling of 0Cx ABENDS

Options TERMTHDACT(X,CESE,) TERMTHDACT(X,CICSDDS,)

QUIET * No output. * No output.

MSG * Message written to CESE |+ Message written to CESE queue or
queue or MSGFILE. MSGFILE.

TRACE * The traceback is written to |+ Language Environment will write traceback,
the CESE queue, followed variables, COBOL working storage, C
by U4038 abend with writeable static. The member handlers will
nodump option. be invoked to provide the desired output to

the new transaction server queue (which
CICS will read and write to CICS transaction
dump later).

» U4039 abend to force CICS transaction
dump followed by U4038 abend with
nodump option.

* Message to CESE or MSGFILE.

bDUMP * CEEDUMP to CESE queue |+ CEEDUMP to new transaction server queue
followed by U4038 abend which CICS will read and write to CICS
with nodump option. transaction dump later.

» U4039 abend to force CICS transaction
dump followed by U4038 abend with
nodump option.

* Message to CESE or MSGFILE.

UATRACE |. 4039 abend with » Language Environment will write traceback,
traceback to CESE queue variables, COBOL working storage, C
followed by U4038 abend writeable statics. The member handlers will
with nodump option. be invoked to provide the desired output to

the new transaction server queue (which
CICS will read and write to CICS transaction
dump later).

» U4039 abend to force CICS transaction
dump followed by U4038 abend with
nodump option.

* Message to CESE or MSGFILE.

UADUMP * U4039 abend with < CEEDUMP to new transaction server queue
CEEDUMP to CESE queue which CICS will read and write to CICS
followed by U4038 abend transaction dump later.
with nodump option. + U4039 abend to force CICS transaction

dump followed by U4038 abend with
nodump option.

* Message to CESE or MSGFILE.

UAONLY 1. 4039 abend followed by |+ U4039 abend followed by U4038 abend with
U4038 abend with nodump nodump option.
option. + No CEEDUMP information is generated.

* Same as CESE.

UAIMM . .

U4039 abend followed by
U4038 abend with hodump
option.

U4039 abend followed by U4038 abend with
nodump option.

No CEEDUMP information is generated.
Same as CESE.

z/OS V1R5.0 Language Environment Debugging Guide

Note: Program checks and other abends will cause CICS to produce a CICS
transaction dump.

For more information about the TERMTHDACT run-time option, segz/OS Language|
|[Environment Programming Referencel

Generating a Language Environment dump with language-specific

functions
In addition to the CEE3DMP callable service and the TERMTHDACT run-time
option, you can use language-specific routines such as C functions, the Fortran
SDUMP service, and the PL/I PLIDUMP service to generate a dump.

C/C++ routines can use the functions cdump (), csnap(), and ctrace() to produce
a Language Environment dump. All three functions call the CEE3DMP callable
service, and each function includes an options string consisting of different
CEESDMP options that you can use to control the information contained in the
dump. For more information on these functions, see [‘Generating a Language|
[Environment Dump of a C/C++ Routine” on page 145

Fortran programs can call SDUMP, DUMP/PDUMP, or CDUMP/CPDUMP to

generate a Language Environment dump. CEE3DMP cannot be called directly from
a Fortran program. For more information on these functions, see f‘Generating 5|
[lLanguage Environment dump of a FORTRAN routine” on page 215

PL/I routines can call PLIDUMP instead of CEE3DMP to produce a dump.
PLIDUMP includes options that you can specify to obtain a variety of information in
the dump. For a detailed explanation about PLIDUMP, see |[‘Generating a Language|
[Environment dump of a PL/I routine” on page 239 |

Understanding the Language Environment dump
The Language Environment dump service generates output of data and storage
from the Language Environment run-time environment on an enclave basis. This
output contains the information needed to debug most basic routine errors.

[Figure 7 on page 50illustrates a dump for enclave main. The example assumes full
use of the CEE3DMP dump options. Ellipses are used to summarize some sections
of the dump and information regarding unhandled conditions may not be present at
all. Sections of the dump are numbered to correspond with the descriptions given in
[‘Sections of the Language Environment dump” on page 57.|

The CEE3DMP was generated by the C program CELSAMP shown in [Figure 5 on|
page 46 CELSAMP uses the DLL CELDLL shown in [Figure 6 on page 49|

Chapter 3. Using Language Environment debugging facilities 45

#pragma options(SERVICE("1.1.c"),NOOPT,TEST,GONUMBER)
#pragma runopts (TERMTHDACT (UADUMP) ,POSIX(ON))

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <d11.h>

#include <signal.h>

#include <leawi.h>

#include <ceeedcct.h>

pthread_mutex_t mut;

pthread t thread[2];

int threads_joined = 0;

char * tl = "Thread 1";

char * t2 = "Thread 2";
/***/
/* thread cleanup: condition handler to clean up threads */

/***/
void thread_cleanup(_FEEDBACK *cond, INT4 *input_token,
_INT4 result, _FEEDBACK *new_cond) {

/* values for handling the conditions */
#define percolate 20
printf(">>> Thread CleanUp: Msg # is %d\n",cond->tok msgno);
if (!threads_joined) ({
printf(">>> Thread CleanUp: Unlocking mutex\n");
pthread mutex_unlock(&mut);
printf(">>> Thread CleanUp: Joining threads\n");

if (pthread_join(thread[0],NULL) == -1)
perror("Join of Thread #1 failed");
if (pthread join(thread[1],NULL) == -1)

perror("Join of Thread #2 failed");
threads_joined = 1;
}
*result = percolate;
printf(">>> Thread_CleanUp: Percolating condition\n");

}

/***/
/* thread func: Invoked via pthread create. */
/***/
void *thread func(void *parm)
{

printf(">>> Thread func: %s Tocking mutex\n",parm);

pthread mutex_lock(&mut);

pthread_mutex_unlock(&mut) ;

printf(">>> Thread_func: %s exitting\n",parm);

pthread_exit(NULL);

Figure 5. The C program CELSAMP (Part 1 of 3)

46 z/0OS V1R5.0 Language Environment Debugging Guide

/********* """"""""" kkhkkhkhkhkkhkhhkhhhhhhhhhhhkhhhkk *******************/

/* Start of Main function. */
/***/
main()
{
d1Thandle * handle;
int i=0;
FILE* fpl;
FILE* p2;
_FEEDBACK fc;
_INT4 token;
_ENTRY pgmptr;
printf("Init MUTEX...\n");
if (pthread_mutex_init(&mut, NULL) == -1) {
perror("Init of mut failed");
exit(101);

}

printf("Lock Mutex Lock...\n");

if (pthread mutex lock(&mut) == -1) {
perror("Lock of mut failed");
exit(102);

}

printf("Create 1st thread...\n");

if (pthread_create(&thread[0],NULL,thread_func, (void *)tl) == -1) {
perror("Could not create thread #1");
exit(103);

}

printf("Create 2nd thread...\n");

if (pthread_create(&thread[1],NULL,thread_func, (void *)t2) == -1) {
perror("Could not create thread #2");
exit(104);

}

printf("Register thread cleanup condition handler...\n");

pgmptr.address = (_POINTER)thread_cleanup;

pgmptr.nesting = NULL;

token = 1;

CEEHDLR (&pgmptr, &token, &fc);

if (_FBCHECK (fc , CEE0G0O) =0) {
printf("CEEHDLR failed with message number %d\n",fc.tok msgno);
exit(105);

}

printf("Load DLL...\n");

handle = d11Toad("CELDLL");

if (handle == NULL) {
perror("Could not load DLL CELDLL");
exit(106);

}

printf("Query DLL...\n");
pgmptr.address = (_POINTER)d1Tqueryfn(handle,"dump_n_perc");
if (pgmptr.address == NULL) {
perror("Could not find dump_n_perc");
exit(107);
}

Figure 5. The C program CELSAMP (Part 2 of 3)

Chapter 3. Using Language Environment debugging facilities

47

printf("Register condition handler...\n");

pgmptr.nesting = NULL;

token = 2;

CEEHDLR (&pgmptr, &token, &fc);

if (_FBCHECK (fc , CEE00O) !'= 0) {
printf("CEEHDLR failed with message number %d\n",fc.tok msgno);
exit(108);

printf("Write to some files...\n");

fpl = fopen("myfile.data", "w");

if (!fpl) {
perror("Could not open myfile.data for write");
exit(109);

}

fprintf(fpl, "record 1\n");
fprintf(fpl, "record 2\n");
fprintf(fpl, "record 3\n");

fp2 = fopen("memory.data", "wb,type=memory");

if (1fp2) {
perror("Could not open memory.data for write");
exit(112);

}

fprintf(fp2, "some data");
fprintf(fp2, "some more data");
fprintf(fp2, "even more data");

printf("Divide by zero...\n");

i=1/i;

printf("Error -- Should not get here\n");
exit(110);

Figure 5. The C program CELSAMP (Part 3 of 3)

48 2/0S V1R5.0 Language Environment Debugging Guide

/* DLL containing Condition Handler that takes dump and percolates */
#pragma options(SERVICE("1.3.a"),GONUMBER,TEST,NOOPT)

#include <stdio.h>

#include <leawi.h>

#include <stdlib.h>

#include <string.h>

#include <ceeedcct.h>

char wsa_array[10] = { 'C','E','L','D"','L","'L"," ",'"W','S','A'};
#define OPT_STR "THREAD(ALL) BLOCKS STORAGE"

#define TITLE_STR "Sample dump produced by calling CEE3DMP"

void dump_n_perc(_FEEDBACK *cond, INT4 =input_token,
_INT4 result, _FEEDBACK *new_cond) {

/* values for handling the conditions */
#define percolate 20

_CHAR8O title;
_CHAR255 options;
_FEEDBACK fc;

printf(">>> dump_n_perc: Msg # is %d\n",cond->tok_msgno);

/* check if the DIVIDE-BY-ZERO message (0C9) =*/
if (cond->tok msgno == 3209) {

memset (options,' ',sizeof(options));

memcpy (options,0PT_STR,sizeof (OPT_STR)-1);

memset (title,' ',sizeof(title));
memcpy (title, TITLE STR,sizeof (TITLE_STR)-1);

printf(">>> dump_n_perc: Taking dump\n");
CEE3DMP(title,options,&fc);
if (_FBCHECK (fc , CEE00O) !'= 0) {
printf("CEE3DMP failed with msgno %d\n",fc.tok msgno);
exit(299);
}
}
*result = percolate;
printf(">>> dump n_perc: Percolating condition\n");

}

Figure 6. The C DLL CELDLL

For easy reference, the sections of the following dump are humbered to correspond
with the descriptions in[“Sections of the Language Environment dump” on page 57.|

Chapter 3. Using Language Environment debugging facilities 49

[1]CEE3DMP V1 R3.0: Sample dump produced by calling CEE3DMP
[2]CEE3DMP called by program unit POSIX.CRTL.C(CELDLL) (entry

[3]Registers on Entry to CEE3DMP:

PM....... 0100

GPRO..... 2471CEBO GPRI..... 00024A00
GPR4..... 00024A00 GPR5..... 00000010
GPR8..... 2471CECO GPR9..... 2471CFAO
GPR12.... 00015920 GPR13.... 00024800
FPRO..... 4DB0O35F6 D8F87B96

FPR4..... 00000000 00000000

GPREG STORAGE:

Storage around GPRO (2471CEBO)
-0020 2471CE90 00000000 00000000
+0000 2471CEBO C3C5D3C4 D3D340E6
+0020 2471CEDO 40D4A287 407B4089

Storage around GPR1 (00024A00)

-0020
+0000
+0020

000249E0
00024A00
00024A20

Storage
-0020
+0000
+0020

24759638
24759658
24759678

40404040 40404040
000248B0 00024900
2475C480 04000000

around GPR15(24759658)

F1F9F9F8 FOF3FOF9
47FOF014 00C3C5C5
AFFF5800 9E225810

[4]Information for enclave main

[5]Information for thread 24ABED800000000O

Registers on Entry to
PM....... 0100
GPRO..... 2471CEBO
GPR4..... 00024A00
GPRS..... 2471CECO
GPR12.... 00015920
FPRO..... 4DBO35F6
FPR4..... 00000000

GPREG STORAGE:

CEE3DMP:
GPRI..... 00024A00
GPR5..... 00000010
GPRI..... 2471CFAO
GPR13.... 00024800
D8F87B96
00000000

Storage around GPRO (2471CEBO)

GPR10....
GPR14.... 800180E2

00000000 00000000
E2C10000 00000000
A2406C84 15000000

40404040 40404040
000248A0 00024A40
00024A9C 259B1028

FIF1F4FO FOFOFOF1
00000460 00002DC8
DO4CLEOL 5500C00C

2471CEBO
000000F0
000A26C2

00000000
00000000

2471CEBO
000000F0
GPR1O.... 000A26C2
GPR14.... 800180E2
00000000
00000000

-0020
+0000
+0020
[6]Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry
00024800 POSIX.CRTL.C(CELDLL)
24700AB8 +0000010C dump_n_perc
00024748 2479A848 -00000106 CEEPGTFN
000A2098 CEEHDSP 247469A8 +00001460 CEEHDSP
000241E0 POSIX.CRTL.C(CELSAMP)
24702178 +0000088E main
000240C8 2491595 -248D16F6 EDCZMINV
00024018 CEEBBEXT 00007D20 +0000013C CEEBBEXT

GPR11....
GPR15.... A4759658
00000000
00000000

00000000
6EGEGE40
E3C8DIC5

40404040
00004A48
00000000

FOF9FOFO
47FOF001
47D0BO3C

A4700B06
000A2794
2479A6E8

00000000
84A49497
C1C44DC1

40404040
00024800
0004E544

0001F000
90ECDOOC
58FOC2BC

A4700B06
000A2794
GPRI1.... 2479A6E8
GPR15.... A4759658
00000000
00000000

E Addr E Offset
24700AB8
2479A6E8
247469A8

+0000010C
+0000005A
+00001460

24702178
2491595E
00007D20

+0000088E
-248D16F6
+0000013C

00000000
6D956D97
D3D35D40

40404040
00024E70
0004EF94

00000750
18BF41A0
05EF181F

08/15/01 1:05

00000000
8599837A
C2D3D6C3

40404054
A475A51C
2478E6D8

00000000
BFFF4190
5000104C

2471CE90 00000000 00000000 00000000 00000000 00000000 60000000 00000000 00000000
2471CEBO C3C5D3C4 D3D340E6 E2C10000 00000000 6EGE6E4A0 84A49497 6D956D97 8599837A
2471CEDO 40D4A287 407B4089 A2406C84 15000000 E3C8DIC5 C1C44DC1 D3D35D46 C2D3D6C3

Statement

33

141

:29 PM

CELDLL WSA...... >>> dump_n_perc:
Msg # is %d....THREAD(ALL) BLOC
......................... +.u.v

D V....m..WQ

Page: 1

point dump_n_perc) at statement 33 (offset +0000010C).

19980309114000010960..0....8....
.00..CEE...-...H.00. ...ttt
......... [P O T TR
CELDLL WSA >>> dump_n_perc:

Msg # is %d....THREAD(ALL) BLOC

Load Mod

CELDLL
CEEPLPKA
CEEPLPKA

CELSAMP
CEEEV003
CEEBINIT

Service

1.3.a

1.1.c

Status

Call
Call
Call

Exception
Call
Call

Figure 7. Example Dump Using CEE3DMP (Part 1 of 8)

50 z/0S V1R5.0 Language Environment Debugging Guide

[71Condition Information for Active Routines
Condition Information for POSIX.CRTL.C(CELSAMP) (DSA address 000241E0)

CIB Address: 000A26A8

Current Condition:

CEE3209S The system detected a fixed-point divide exception.

Location:

Program Unit: POSIX.CRTL.C(CELSAMP)

Program Unit:Entry:

Machine State:

ILC..... 0004 Interruption Code.....
PSW..... 078D2400 A4702A0A

GPRO..... 000242B8 GPRI..... 000242A8
GPR4..... 80007E04 GPR5..... 25993870
GPR8..... 00000000 GPR9..... 00000001

GPRI12.... 00015920

main Statement:

GPR13.... 000241E0

0009
GPR2..... A4915A12
GPR6..... 259938E8

GPR10O.... A4915952
GPR14.... A47029F6

Storage dump near condition, beginning at location: 247029F6

+000000 247029F6 4400C1C4 4400CIAC 41800001 8E800020 5D80DOIC 5090D09C 4400C1AC 417063F8

[8]Parameters, Registers, and Variables for Active Routines:
dump_n_perc (DSA address 00024800):

Saved Registers:

GPRO..... 2471CEBO
GPR4..... 00024A00
GPR8..... 2471CECO

GPRI12.... 00015920
GPREG STORAGE:

GPRI..... 00024A00
GPR5..... 00000010
GPRI..... 2471CFAO

GPR13.... 00024800

Storage around GPRO (2471CEBO)

-0020 2471CE90 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | .. e.neerneeneerneeneeneennaenns

main (DSA address 000241E0):

Saved Registers:

GPRO..... 00024288
GPR4..... 80007E04
GPR8..... 00000000

GPR12.... 00015920
GPREG STORAGE:

GPRI..... 000242A8
GPR5..... 25993870
GPRI..... 00000001

GPR13.... 000241E0

Storage around GPRO (000242B8)

-0020 00024298 259ADB90O 00000000 00000000 00000000 25993CC8 25993CB8 00000003 259938F1

Local Variables:

[9]Control Blocks for Active Routines:
DSA for dump_n_perc: 00024800

+000000 FLAGS.... 1004

+000010 R15...... A4759658 2471CEBO Rl....... 00024A00 R2....... 2471CEBO
+000024 R4....... 00024A00 .. 00000010 R6....... 000000F0 R7....... 000A2794
+000038 R9....... 2471CFAO . 000A26C2 RI1l...... 2479A6E8 RI12...... 00015920
+00004C NAB...... 00024A10 2474D3FF reserved. 2474C400 00015920 000248B4
+000064 reserved. 24717AE4 reserved. 000248DC MODE..... A4700BC6 reserved. 00024890
+000078 reserved. 24717AE8 reserved. 00024890
DSA for CEEPGTFN: 00024748

+000000 FLAGS.... 1000 member... 3B40 BKC...... 000A2098 FWC...... 00024928
+000010 R15...... 24700AB8 RO....... 2471CEBO RI1....... 247178F8 R2....... 00044220
+000024 R4....... 000A26A8 R5....... 00000002 R6....... 247178D0 R7....... 000A3097
+000038 R9....... 25993870 R10...... 247479A7 R11...... A474EACO RIZ2...... 00015920
+00004C NAB...... 00024800 PNAB..... 800118EQ reserved. 00000000 00000000 259A0408
+000064 reserved. 25993C9D reserved. 259A0408 MODE..... A474C756 reserved. 259A03F0

GPR2..... 2471CEBO
GPR6..... 000000F0
GPR10.... 000A26C2
GPR14.... 800180E2

GPR2..... A4915A12
GPR6..... 259938E8
GPR10O.... A4915952

GPR14.... A47029F6

+000078 reserved. 2471A1BO reserved. A4A81C38
DSA for CEEHDSP: 000A2098

+000000 FLAGS.... 0808

+000010 R15...... 2479A6E8 259ADB90 R1....... 247178F8 R2....... 00044220
+000024 R4....... 000A26A8 .. 00000002 R6....... 24717800 R7....... 000A3097
+000038 R9....... 247489A6 . 247479A7 RI1l...... A47469A8 R12...... 00015920
+00004C NAB...... 00024748 000A2098 reserved. 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... A4746F9A reserved. 00000000

+000078 reserved. 00000000 reserved. 00000000

141 Offset: +0000088E

GPR3..... A47021C6
GPR7..... 25993CC8
GPR11.... 80007D20
GPR15.... 00000012

GPR3..... A4700B06
GPR7..... 000A2794
GPR11.... 2479A6E8
GPR15.... A4759658

GPR3..... A47021C6
GPR7..... 25993CC8
GPR11.... 80007D20
GPR15.... 00000012

member... FFFO BKC...... 00024748 FWC...... 00024A10

member. .. CEEl BKC...... 000241E0 FWC...... 00024748

reserved.

000248A0
000A24C0O

reserved.

00000009
24719C7C

reserved
00000000
00000000

|..AD. AL et Y T A....8|

[P roHore r.1]

. 800180E2
. A4700B0O6
. 2471CECO
000163D0

. A479A744
. 259ADB90
. 247499A5
000163D0

. A4747EOA
. 00014558
. 247499A5
. 000163D0

Figure 7. Example Dump Using CEE3DMP (Part 2 of 8)

Chapter 3. Using Language Environment debugging facilities

51

DSA for main: 000241EQ
+000000 FLAGS.... 1000
+000010 2489F3D8
+000024 80007E04
+000038 80000000
+00004C 000242B8
+000064 reserved. 00024328
+000078 reserved. 00000000

CIB for main: 000A26A8
+000000 000A26A8 (C3C9C240
+000020 000A26C8 00000001
+000040 000A26E8 00000000
+000060 000A2708 00000000
+000080 000A2728 - +00009F
+0000A0 000A2748 00000000
+0000CO 000A2768 00000000
+0000EO 000A2788 00000002
+000100 000A27A8 00000008

[10]Storage for Active Routines:
DSA frame: 00024800
+000000 00024800
+000020 00024820
+000040 00024840
+000060 00024860
+000080 00024880
+0000A0 000248A0
+0000C0 000248C0O
+0000EQ 000248E0
+000100 00024900
+000120 00024920
+000140 00024940
+0001EQ 000249E0
+000200 00024A00
DSA frame: 00024748
+000000 00024748
+000020 00024768
+000040 00024788
+000060 000247A8
+000080 000247C8
+0000A0 000247E8
DSA frame: 000241EQ
+000000 000241E0
+000020 00024200
+000040 00024220
+000060 00024240
+000080 00024260
+0000A0 00024280
+0000C0 000242A0

1004FFFO
A4700B06
2479A6E8
000248A0
000248B4
00000003
A4838584
40404040
E3C8DIC5
40404040
- +0001DF
40404040
000248B0

10003B40
259ADB90
A474EACO
00000009
000247F0
00024800

16000000
A47021Co
80007D20
00000000
00000000
2599F1EC
00000000

[11]Control Blocks Associated wit
CAA: 00015920
+000000 00015920
+000020 00015940
+000040 00015960
+000060 00015980
+000080 000159A0
+0000A0 000159C0O
+000120 00015A40
+000140 00015A60
+000160 00015A80
+000180 00015AA0
+0001A0 00015ACO
+0001CO 00015AE0

00000800
00000000
00000000
00000000
00000000
- +00011F
24716B40
00000000
- +00017F
00000000
€00605CC
0700C198

member... 0000

RO....... 000242B8
R5....... 25993870
. A4915952
00017038
reserved. 01000000

reserved. 00000000

MODE.....

00000000
000A27B4
000241E0
00000000
000A2747
00000000
247031E0
00000003
24717E9C

00000000
00030C89
24702A0A
00000000

010C0004
59C3C5C5
24717D50
00000000

same as above
00000000
000241E0
00000014
E9D4C3C8

00000000
000241E0
00000002
00000000

00024748
00024A00
00015920
24717AE4
000248DC
00015920
4082A840
40404040
C1C44DC1
40404040
000249DF
40404040
00024900

00024A10
00000010
000163D0
000248DC
00000001
000A26A8
83819393
40404040
D3D35D40
40404040

800180E2
000000F0
00024A10
A4700BC6
A4ABDCF6
00000000
89958740
40404040
C2D3D6C3
40404040

same as above
40404040
00024A40

40404040
000248A0

000A2098
000A26A8
00015920
25993C9D
00024802
000A3110

00024928
00000002
000163D0
259A0408
00024800
2491595E

A479A744
24717800
00024800
A474C756
000247FC
00000000

000240C8
80007E04
00015920
00024328
A47C1792
259A03F4
00000000

00024288
25993870
000163D0
01000000
04000000
00000000
25993CC8

A47029F6
259938E8
000242B8
A470271C
F97FC14F
00000000
25993CB8

h the Thread:

00000000
00000000
00000000
00000000
00000000
00015A3F
00000000
00000000
00015A9F
00000000
00008546
0700C198

00024000
00016610
00000000
00000000
00000000

00044000
00000000
00000000
00000000
00000000
same as above
00000000
00000000
same as above

00000000
0700C198
0700C198

000240C8
000242A8
259938E8
80007D20
reserved. 00014D30
A470271C

00000000
00000001
00000003
00000000

40250000
24702A06
00000002
00000000

A4759658
000A2794
2474D3FF
00024890
000A3430
E2819497
C3C5C5F3
40404040
D2E240E2
40404040

40404040
00004A48

24700AB8
000A3097
800118E0
259A03F0
000247F8
00024018

2489F3D8
25993CC8
00017038
00000000
00000001
00000000
00000003

00000000
00000000
00000000
00000000
00000000

00000000 00000000
00000000 00000000

00000000 00000000
0700C198 0700C198
0700C198 0700C198

00000000
00000000
00000000
00000000

940C9000
00000000
00000000
000242B8

2471CEBO
2471CECO
2474C400
000A24C0
000A3421
93854084
C4D4D740
40404040
E3D6DIC1
40404040

40404040
00024800

2471CEBO
247499A5
00000000
24719C7C
00024802
00024018

00024288
00000001
00014D30
00000000
F97FC14F
00000002
259938F1

00000000
00000000
00000000
80012690
00000000

00000000
00000000

00000000
0700C198
0700C198

00030C89
000241E0
00000000
00000000

00000009
00000000
00000000
000242A8

00024A00
2471CFAO
00015920
24717AE8
247178D0
A4949740
40404040
40404040
C7C54040
40404040

40404040
00024E70

247178F8
25993870
00000000
2471A1BO
000247F0
1004FFFO

000242A8
80000000
247C16F0
00000000
259AD3DE
259ADB90
00000100

00000000
00000000
00000000
00000000
00000000

00000000
00000000

50C0D064
0700C198
0700C198

000242B8
A4915A12
25993CC8
00015920
247C16F0 00015920
reserved. 00000000

59C3C5C5
A47ECFC8
00000000
00000000

00000000
00000001
40404040
A4915A12

2471CEBO
000A26C2
000248B4
00024890
0000088E
97999684
40404040
40404040
40404040
40404040

40404054
A475A51C

00044220
247479A7
259A0408
A4A81C38
00024802
00024748

A4915A12
A4915952
00015920
00000000
00000000
00000000
24716FBO

00000000
00000000
00000000
00000000
00000000

00000000
00000000

05C058C0
0700C198
0700C198

reserved. 000163D0
00000000
00000000

A47029F6
A47021C6
00000001

........... y....Sample dump prod
uced by calling CEE3DMP

THREAD (ALL) BLOCKS STORAGE

...... e...Aq..Aq..Aq..Aq..Aq. .Aq
..Aq..Aq..Aq..Aq..Aq..Aq..Aq. .Aq

Figure 7. Example Dump Using CEE3DMP (Part 3 of 8)

52 7z/0S V1R5.0 Language Environment Debugging Guide

Thread Synchronization Queue Element (SQEL): 247181F8

+000000 247181F8 00000000 00000000 00000000 0000000 2599EFI0 00000007 OOO4E5F8 00000000
+000020 24718218 00015920 00000000 00000000 000000 00000000 0OOOO000 0000 OO0

DUMMY DSA: 000161C8

+000000 FLAGS.... 0000 member. .. 0000 BKC...... 00005F80 FWC...... 00024018 R14...... A47048C8
+000010 R15...... 80007D20 7D00002B RI1....... 25993008 R2....... 00000000 R3....... 00000000
+000024 R4....... 00000000 00000000 R6....... 00000000 R7....... 00017038 R8....... 24703F60
+000038 R9....... 009DB428 . 00000000 RII...... A47047F2 RI2...... 00015920 reserved. 000163D0
+00004C NAB...... 00024018 00024018 reserved. 00000000 00000000 00000000 00000000

+000064 reserved. 00000000 reserved. 00000000 MODE..... 00000000 reserved. 00000000 00000000

+000078 reserved. 00000000 reserved. 00000000

[5]1Information for thread 24ABF69000000001

Registers on Entry to CEE3DMP:

PM.. ... 0100
GPRO..... 247181F8 GPRI..... 000569FC GPR2..... 0004E164 GPR3..... 00054958
GPR4..... 24A84D80O GPR5..... 2599EF9A GPR6..... 259938BC GPR7..... 2599EF90
[6]Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
00056978 CEEOPML2 24A84558 +000004BE CEEOPML2 24A84558 +000004BE CEEOLVD Call
00056728 2489A658 +0000160A EDCOWRP2 2489B31C +00000946 CEEEV003 Call
00056680 POSIX.CRTL.C(CELSAMP)
24701F00 +000000A4 thread_func 24701F00 +000000A4 45 CELSAMP 1.1.c Call
7F83E5FO POSIX.CRTL.C(CELSAMP)
24702178 -246F57F6 main 24702178 -246F57F6 CELSAMP 1.1.c Call
[8]Parameters, Registers, and Variables for Active Routines:
CEEOPML2 (DSA address 00056978):
Saved Registers:
GPRO..... 247181F8 GPRI..... 000569FC GPR2..... 0004E164 GPR3..... 00054958
GPR4..... 24A84D80O GPR5..... 2599EF9A GPR6..... 259938BC GPR7..... 2599EF90
thread_func (DSA address 00056680) :
Parameters:
parm void * 0x259938E8
Saved Registers:
GPRO..... 00056728 GPR1..... 0005671C GPR2..... 24A92528 GPR3..... A4701F4E
GPR4..... 00000000 GPR5..... 25993870 GPR6..... 259938E8 GPR7..... 259938BC
[9]Control Blocks for Active Routines:
DSA for CEEOPML2: 00056978
+000000 FLAGS.... 0000 member... 0007 BKC...... 00056728 FWC...... 00056A78 RI14...... A4A84A18
+000010 RI15...... A4A85B18 RO 247181F8 Rl....... 000569FC R2....... 0004E164 R3....... 00054958
+000024 R4....... 24A84D80 R5 2599EF9A R6....... 259938BC R7....... 2599EF90 R8....... 25991027
[10]Storage for Active Routines:
DSA frame: 00056728
+000000 00056728 10000000 00056680 00056978 8001E862 A4A84558 247181F8 0007B958 24A92528 |.....ceevvvenn. Y.uy....a8..... z..
+000020 00056748 A4701FAE 00000000 25993870 259938E8 259938BC 25991027 00056210 8000DOA7 |u..+. rooor.Yorooor X

[11]Control Blocks Associated with the Thread:
CAA: 00055748
+000000 00055748 00000800 00000000 00056668 00076668
+000020 00055768 00000000 00000000 00000000 0OOOOO0O

00000000 00000000 00000000 OOOOOOO
00000000 00000000 00000000 OOOOO0O

Figure 7. Example Dump Using CEE3DMP (Part 4 of 8)

53

Chapter 3. Using Language Environment debugging facilities

[12]Enclave Control Blocks:

EDB: 000148B0
+000000 000148B0O
+000020 000148D0O
+000040 000148F0
+000060 00014910
+000080 00014930

C3C5C5C5
00014D78
00000000
0000CFO0O
80000000

+0000A0 00014950
MEML: 000157E0
+000000 000157E0
+000020 00015800
+000040 00015820 00000000
+000060 00015840 - +00011F
Mutex and Condition Variable
+000000 0004EQ18 00008F50
+000020 0004E038 000007CO
+000040 0004E058 25993FB8
+000060 0004EQ78 25994070

00000001

00000000
00000000

C4C24040
00014DA8
00000000
0004E000
0000CFC4

C7000001
00017038
00005F80
2471C02C
00000000

000157E0
00014558
00000000
00000000
00000000
00000000 00000000 00000000
00000000
00000000
00000000
000158FF

247288A8
247288A8
247288A8

00000000
00000000
00000000

00014F00
00000000
00000000
000166E0
00000003

00000000
00000000

2471A5A4
00000000

same as above

Blocks (MCVB+MHT+CHT): 0004EQ18

0004E044 000003F8 00001FCO
00000000 259940D8 00000000
00000000 25993F78 00000000
00000000 00000000 00000000

00000000
25994020
00000000
00000000

Thread Synchronization Enclave Latch Table (EPALT): 0004E544

+000000 0004E544 00000000
+000020 0004E564 - +00009F
+0000A0 00O4E5E4 00000000
+0000CO 0004E604 00000000
+0000EQ 0004E624 - +00029F

Thread Synchronization Trace
+000000 0004E000 00046000
Thread Synchronization Trace
+000000 00046000 0000D4E7
+000020 00046020 0002D4E7
+000040 00046040 00000000
+000060 00046060 - +003FFF
DLL Information:

WSA Addr Module Addr Thread ID
24ABED8000000000 00000001

2471CEBO 247006F0
HEAPCHK Option Control Block
+000000 25993028 C8C3D6D7
+000020 25993048 00000000
HEAPCHK Element Table (HCEL)
Header: 259BD028
+000000 259BD028 C8C3C5D3
Address
Table: 259BD048
+000000 259BD048
+000020 259BD068
+000040 259BDO88 259BC130
+000060 259BDOA8 259BF020
HEAPCHK Element Table (HCEL)
Header: 259AF028
+000000 259AF028 C8C3C5D3
Address

259BC020
259BC090

Table: 259AF048
+000000 259AF048 259AE020
HEAPCHK Element Table (HCEL)
Header: 2599D028
+000000 25990028 C8C3C5D3
Address
Table: 2599D048
+000000 25990048
+000020 25990068

25995020
25995090

00000000 00000000 00000000
0004E5E3
00000000 00000000 00000000
00000000 00000000 00000000
O004E7E3

Block (OTRB): 0004E000
00000004 000007FF 00046000
Table (OTRTBL): 00046000
40C9D540 259938BC 00000000
40E64040 259938BC 00000002
00000000 00000000 00000000
00049FFF

(HCOP) : 25993028

00000024 00000001 00000000
C8C3C6E3 00000200 00000000
for Heapid 259B24B4 :

259AF028 00000000 259B24B4
Seg Addr Length

259BC000 00000050 00000000
259BC000 00000018 00000000
259BC000 00000050 00000000
259BF000 000003C8 00000000
for Heapid 259ADC14 :

2599D028 259BD028 259ADC14
Seg Addr Length

259AEQ00 000001C8 00000000
for Heapid 00000000 :

00000000 259AF028 00000000
Seg Addr Length

25995000 00000038 00000000
25995000 00000010 00000000

Use Count Name

00000000

same as above

00000000
00000000

same as above

3E008000

0001D4E7
0003D4E7
00000000

same as above

CELDLL

00000000
00000000

000001F4
Address

259BC070
259BCOA8
259BC180
00000000

000001F4
Address
00000000
000001F4
Address

25995058
259950A0

00000000
80013808
0001E038
00000000
00000000

00000000

00000000
00000000
00000000

259940C0
00000000
00000000
00000000

00000000

DBSE7E08
00000000

BEOO800O

40C14040
40E64040
00000000

259BD028
00000000

00000007
Seg Addr

259BC000
259BC000
259BC000
00000000

00000001
Seg Addr
00000000
00000004
Seg Addr

25995000
25995000

00000000
000149D0
24716738
247E71A0
00005FDO

00000000

247288A8
A47ECFC8
247288A8

0004E444
25993FF8
00000000
00000000

00000000

247181F8
00000000

00008F50

259938BC
259938BC
00000000

2599304C
00000000

00000007
Length

00000020
00000088
00000020
00000000

00000001
Length
00000000
00000004
Length

00000038
00000010

00000000
00008000
259938B8
00015920
009DB038

00000003
00000000

00000000
00000000

000000F8
00000000
00000000
00000000

00000000

0004E850
00000000

0004E044

00000000
00000001
00000000

00000000
00000000

00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000

GMXOIN el MX A

SMXW e MX W

HCOP. vt r.<....
e WHCFT
[HCEL. .0 eunennn... 4...

i e, Yoo
Al &oovnnn Aeevvviiinne,
00 He
[HCEL.revevnennen.t. 4...
[,

[HCEL...... [C Aovviiiiiin, |
rérde o, r&..r&

T o A r&..r&

Figure 7. Example Dump Using CEE3DMP (Part 5 of 8)

54 z/0S V1R5.0 Language Environment Debugging Guide

Heap Storage

Diagnostics

Stg Addr ID Length Entry E Addr E Offset Load Mod
25358020 25321564 000002A8 CEEV#GTS 05AB26F8 +00000000 CEEPLPKA
CEEVGTST 05ABCB40 +00000072 CEEPLPKA
CEEVGTHP 05ABCOC8 +00OOOOFA CEEPLPKA
CEEOSIGG 05A72700 +00001D48 CEEPLPKA
CEEV#GH 05ABA688 -FFF3E3FC CEEPLPKA
func3 25308A70 +00000078 *PATHNAM
func2 25308BA0 +00000076 *PATHNAM
funcl 25308C78 +00000076 *PATHNAM
main 25308D50 +00000076 *PATHNAM
EDCZMINV 05DF29FE -FA214608 CEEEV003
25342038 00000000 00000120 CEEV#GH 05ABA688 +00000000 CEEPLPKA
setlocale 05DABB18 +000000FC CEEEV00O3
tzset 05012108 +00000594 CEEEV003
_cinit 05C1F8FO +00002C18 CEEEV00O3
CEEZINV 05AE60BO +00000C76 CEEPLPKA
main 25308D50 -DB85A804 *PATHNAM
Language Environment Trace Table:
Most recent trace entry is at displacement: 002980
Displacement Trace Entry in Hexadecimal
+000000 Time 20.32.18.430976 Date 2001.08.26 Thread ID... 24ABED8000000000
+000010 Member ID.... 03 Flags..... 00004B Entry Type..... 00000001
+000018 94818995 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+000038 60606E4D FOF8F55D 40979989 95A3864D 5D404040 40404040 40404040 40404040
+000058 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+000078 40404040 40404040
+000080 Time 20.32.18.448404 Date 2001.08.26 Thread ID... 24ABED8000000000
+000090 Member ID.... 03 Flags..... 00004B Entry Type..... 00000002
+000098 4C60604D FOF8F55D 40D9F1F5 7EFOFOFO FOFOFOFO C540C5D9 DID5D67E FOFOFOFO
+0000B8 FOFOFOFO 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0000D8 00000000 00000000 00000000 0000000 0000 OO0 OO0 00000000
+0000F8 00000000 00000000
+002900 Time 20.32.18.718260 Date 2001.08.26 Thread ID... 24ABED8000000000
+002910 Member ID.... 03 Flags..... 00004B Entry Type..... 00000001
+002918 84A49497 6D956D97 85998340 40404040 40404040 40404040 40404040 40404040
+002938 60606E4D FOF8F55D 40979989 95A3864D 5D404040 40404040 40404040 40404040
+002958 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+002978 40404040 40404040
+002980 Time 20.32.18.718278 Date 20001.08.26 Thread ID... 24ABED8000000000
+002990 Member ID.... 03 Flags..... 00004B Entry Type..... 00000002
+002998 4C60604D FOF8F55D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9 DID5D67E FOFOFOFO
+0029B8 FOFOFOFO 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0029D8 00000000 00000000 00000000 0000000 000000 OO0 OO0 00000000
+0029F8 00000000 00000000

[13]Enclave Storage:

Initial (User) Heap

+000000
+000020
+000040
+000060
+000080
+0000A0
+0000C0
+0000EO

25995000
25995020
25995040
25995060
25995080
259950A0
259950C0
259950E0

C8C1D5C3
25995000
25993870
C3C4D3D3
00000000
25995000
00000000
- +007FFF

00014D48
00000038
00000490
25995028
00000000
00000010
00000000
2599CFFF

00014D48 00000000
C3C4D3D3 00000000
00000000 00000000
80000000 00000000
00000000 00000000
259ADBEO 00000000
00000000 00000000

: 25995000
25995000 259950B0 00008000 00007F50
40000000 00000000 24700F98 24703F70
00000000 00000000 25995000 00000038
247006F0 24700770 2471CEBO 00000150
25995000 00000010 259ADBB8 00000000
00000000 00000000 00000000 OOOOO0O
00000000 00000000 00000000 00000000

same as above

Trace Entry in EBCDIC

main
-->(085) printf()

<--(085) R15=0000000E ERRNO=0000
0000 et

dump_n_perc
-->(085) printf()

<--(085) R15=00000000 ERRNO=0000
0000 st

HANC..(vee(ennnnn ré&..ré&

ré..... COLL..vw vvvnnnnnnn

B
CDLL.r&...cvuvunnnnn
................. r&

T

Figure 7. Example Dump Using CEE3DMP (Part 6 of 8)

Chapter 3. Using Language Environment debugging facilities

55

LE/370 Anywhere Heap
+000000 24A91000
+000020 24A91020
+000040 24A91040
+000060 24A91060

C8C1D5C3 25993
24A91000 OOFOO
94818995 40404
60606E4D FOF8F

LE/370 Below Heap
+000000 00044000
+000020 00044020
+000040 00044040
+000060 00044060

C8C1D5C3 00054
00044000 00000
000241E0 24701
00000000 00000

Additional Heap, heapid = 259B24B4
+000000 259BCO0O C8C1D5C3 259BF
+000020 259BC020 259BCO00 00000
+000040 259BC040 00000003 259BC
+000060 259BCO60 00000000 24700
+000080 259BC080 C3DIE3D3 4BC34

WSA for Program Object(s)

WSA: 2471CEBO
+000000 2471CEBO
+000020 2471CEDO
+000040 2471CEFO
+000060 2471CF10
+000080 2471CF30
+0000A0 2471CF50
+0000C0O 2471CF70
+0000EQ 2471CF90
+000100 2471CFBO
+000120 2471CFDO
+000140 2471CFFO

C3C5D3C4
40D4A287 407B4
D2E240E2 E3D6D
A4838584 4082A
6D956D97 85998
00000000 00000
9640684 15000
A3899587 40839
24700A80 00000
24700A80 00000
24700A80 00000

D3D34

000 00014D78 00014D78
008 BO35F6D8 B2C00081
040 40404040 40404040
55D 40979989 95A3864D

000 00014DA8 00014DA8
048 C8CAD3E2 00000000
038 00000000 00000000
000 00044000 00000128

000 259B24B4 259B24B4
050 00000000 24700C8C
098 00020000 259BCO78
CAO 00000000 00000000
DC3 C5D3C4D3 D35D0000

OE6 E2C10000
089 A2406C84 15000000
9C1 C7C50000 00000000
840 83819393 89958740
37A 40E38192 89958740
000 C3C5C5F3 C4D4D740
000 6E6EGE40 84A49497
695 8489A389 96951500
000 247006F0 2471CEBO
000 247006F0 2471CEBO
000 247006F0 2471CEBO

00000000

: 24A91000
24791000 00000000
24ABED8O 00000000
40404040 40404040
50404040 40404040

: 00044000
80044000 00044388
00044220 00000040
00000000 00000000
07000700 O5E0900F

: 259BCO00
259BC0O00 259BC1A0
24700AB8 259BCOBO
00000000 4BC34DC3
259BC000 00000020
259BC000 00000018

GEGEGE40 84A49497
E3C8D9C5 C1C44DC1
E2819497 93854084
C3C5C5F3 C4D4D700
84A49497 15000000
86818993 858440A6
6D956D97 8599837A
180F58F0 FO1007FF
180F58F0 FO1007FF
180F58F0 FO1007FF
00000000 00000000

[14]Run-Time Options Report:

00F00028
03000000
40404040
40404040

00002000
00010000
00000000
EOA641DE

000003E8
2471ABDA
C5D3C4D3
0014D7D6
00000003

6D956D97
D3D35D40
A4949740
6EGEGE40D
00000000
89A38840
40D78599
24700A70
247008A8
24700898
00000000

LAST WHERE SET OPTION
Installation default ABPERC (NONE)
Installation default ABTERMENC (ABEND)
Installation default NOAIXBLD
Installation default ALL31(ON)

Assembler user exit

Installation default
Assembler user exit

Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default

Installation default

Installation default
Installation default
Installation default
Default setting
Assembler user exit
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Installation default
Ignored

Installation default
Installation default

ANYHEAP (32768, 16384 ,ANYWHERE , FREE)

NOAUTOTASK
BELOWHEAP (8192,8192, FREE)
CBLOPTS (ON)
CBLPSHPOP (ON)
CBLQDA (OFF)
CHECK (ON)
COUNTRY (US)
NODEBUG
DEPTHCONDLMT (10)
ENVAR("")
ERRCOUNT(0)
ERRUNIT (6)
FILEHIST
FILETAG (NOAUTOCVT,NOAUTOTAG)
NOFLOW

HEAP (49152,16384 ,ANYWHERE ,KEEP,8192,4096)

HEAPCHK (OFF,1,0,0)

00000000
00000001
40404040
40404040

00001C78
00000001
00000000
002258C0

00000248
4E801000
00000000
E2C9E74B
00000130

8599837A
C2D3D6C3
97999684
84A49497
00000000
94A28795
83969381
2471CEBO
2471CEBO
2471CEBO
00000000

HEAPPOOLS (OFF,8,10,32,160,128,10,256,10,1024,10,2048,10)

INFOMSGFILTER(OFF, ,,,)
INQPCOPN
INTERRUPT (OFF)
LIBRARY (SYSCEE)
LIBSTACK (40964096, FREE)
MSGFILE(SYSOUT,FBA,121,0,NOENQ)
MSGQ(15)
NATLANG (ENU)
NONONIPTSTACK (See THREADSTACK)
OCSTATUS
NOPC

HANC.v. oo (vee(eeZeeennns [c I
B2 R 10 -
main

-->(085) printf()

....... RN T
....... Qevvvveeeenn. .C(CELDL. ...
.......................... POSIX

CELDLL WSA...... >>> dump_n_perc:
Msg # is %d....THREAD(ALL) BLOC
KS STORAGE...... Sample dump prod

uced by calling CEE3DMP.>>> dump
_n_perc: Taking dump............
........ CEE3DMP failed with msgn
0 %d....>>> dump_n_perc: Percola
ting condition..... 00, ...

e Ourrenns 00...... Yeur
s Ourrnnns 00...... q....
........... [,

Figure 7. Example Dump Using CEE3DMP (Part 7 of 8)

56 z/0S V1R5.0 Language Environment Debugging Guide

Installation default NOPC

Invocation command POSIX(ON)

Installation default PROFILE(OFF,"")

Installation default PRTUNIT(6)

Installation default PUNUNIT(7)

Installation default RDRUNIT(5)

Installation default RECPAD (OFF)

Invocation command RPTOPTS (ON)

Invocation command RPTSTG(ON)

Installation default NORTEREUS

Installation default RTLS (OFF)

Installation default NOSIMVRD

Programmer default STACK(4096,4096 ,ANYWHERE ,KEEP,524288,131072)
Installation default STORAGE (NONE ,NONE ,NONE, 0)
Installation default TERMTHDACT (TRACE, ,96)

Installation default NOTEST (ALL,"*","PROMPT","INSPPREF")
Installation default THREADHEAP (4096 ,4096 ,ANYWHERE , KEEP)
Installation default THREADSTACK (OFF,4096,4096 ,ANYWHERE ,KEEP,131072,131072)
Installation default TRACE (OFF,4096,DUMP, LE=0)
Installation default TRAP(ON,SPIE)

Installation default UPSI (00000000)

Installation default NOUSRHDLR(,)

Installation default VCTRSAVE (OFF)

Installation default VERSION()

Installation default XPLINK(OFF)

Installation default XUFLOW (AUTO)

[15]Process Control Blocks:

PCB: 00014558
+000000 00014558
+000020 00014578
+000040 00014598

MEML: 00014788
+000000 00014788

+000020 000147A8
+000040 000147C8
+000060 000147E8

C3C5C5D7 C3C24040 03030298 00000000 00000000 00000000 00014788 247E8CD8
247E2D68 247E7540 247E7068 2470A938 00013918 00000000 00000000 000148B0O
247E7390 7E000000 00000000 000122D4 00000000 00000000 00000000 00000000

CEEPCB ...

00000000 00000000 247288A8 00000000 00000000 00000000 247288A8 00000000 |.......... hy.ovoviooian, hy....
00000000 00000000 247288A8 00000000 24719004 00000000 A47ECFC8 00000000 |.......... hyooovoioiiiis u=.H....
00000000 00000000 247288A8 00000000 00000000 00000000 247288A8 00000000 |.......... hy.ovoiiiainn, hy....
- +00011F 000148A7 same as above

Thread Synchronization Process Latch Table (PPALT): 0004EF44

+000000 0004EF44
+000020 0004EF64
+000040 0004EF84
+000060 0004EFA4
+000080 0004EFC4

DBBE7E08 247181F8 00Q4E9EO 00000000 00000000 00000000 6EO0OE00 0000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 60000000
00000000 00000000 00000000 00000000 DBBE7EO8 247181F8 0004EA44 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 0OOOOO0
- +0009FF 0004F943 same as above

Figure 7. Example Dump Using CEE3DMP (Part 8 of 8)

Sections of the Language Environment dump

The sections of the dump listed here appear independently of the Language
Environment-conforming languages used. Each conforming language adds
language-specific storage and file information to the dump.

For a detailed explanation of language-specific dump output:

 For C/C++ routines, see [‘Finding C/C++ Information in a Language Environment]
[Dump” on page 156

+ For COBOL routines, see|‘Finding COBOL information in a dump” on page 197

- For Fortran routines, see [‘Finding FORTRAN information in a Language|
[Environment dump” on page 221

 For PL/I routines, see [‘Finding PL/I information in a dump” on page 241

[1] Page Heading

Chapter 3. Using Language Environment debugging facilites 57

The page heading section appears on the top of each page of the dump and

contains:

« CEES3DMP identifier

» Title
For dumps generated as a result of an unhandled condition, the title is “Condition
processing resulted in the Unhandled condition.”

* Product abbreviation of Language Environment

* Version number

* Release number

* Date

* Time

* Page number

[2] Caller Program Unit and Offset

This information identifies the routine name and offset in the calling routine of the
call to the dump service.

[3] Registers on Entry to CEE3DMP

This section of the dump shows data at the time of the call to the dump service.
* Program mask

The program mask contains the bits for the fixed-point overflow mask, decimal
overflow mask, exponent underflow mask, and significance mask.

* General purpose registers (GPRs) 0-15

On entry to CEE3DMP, the GPRs contain:
GPR 0
Working register
GPR 1
Pointer to the argument list
GPR 2-11
Working registers
GPR 12
Address of CAA
GPR 13
Pointer to caller’s stack frame
GPR 14
Address of next instruction to run if the ALL31 run-time option is set to
ON
GPR 15
Entry point of CEE3SDMP

* Floating point registers (FPRs) 0, 2, 4, 6
» Storage pointed to by General Purpose Registers

Treating the contents of each register as an address, 32 bytes before and 64
bytes after the address are shown.

[4] - [14] Enclave Information

These sections show information that is specific to an enclave. When multiple
enclaves are dumped, these sections will appear for each enclave.

[4] Enclave Identifier

58 z/0S V1R5.0 Language Environment Debugging Guide

This statement names the enclave for which information in the dump is provided. If
multiple enclaves exist, the dump service generates data and storage information
for the most current enclave, followed by previous enclaves in a last-in-first-out
(LIFO) order. For more information about dumps for multiple enclaves, see
fenclave dumps” on page 75.|

[5] - [11] Thread Information

These sections show information that is specific to a thread. When multiple threads
are dumped, these sections will appear for each thread.

[5] Information for thread

This section shows the system identifier for the thread. Each thread has a unique
identifier.

[6] Traceback

In a multithread case, the traceback reflects only the current thread. For all active
routines, the traceback section shows:

» Stack frame (DSA) address
* Program unit

The primary entry point of the external procedure. For COBOL programs, this is
the PROGRAM-ID name. For C, Fortran, and PL/I routines, this is the compile
unit name. For Language Environment-conforming assemblers, this is either the
EPNAME = value on the CEEPPA macro, or a fully qualified path name.

* Program unit address

* Program unit offset

The offset of the last instruction to run in the routine. If the offset is a negative
number, zero, or a very large positive number, the routine associated with the
offset probably did not allocate a save area or the routine could have been called
using SVC-assisted linkage. Adding the program unit address to the offset gives
you the location of the current instruction in the routine. This offset is from the
starting address of the routine.

e Entry
For COBOL, Fortran, PL/I, and VisualAge PL/I routines, this is the entry point
name. For C/C++ routines, this is the function name. If a function name or entry
point was not specified for a particular routine, then the string ** NoName **’ will
appear.

* Entry point address

* Entry point offset

* Load module

» Service level
The latest service level applied to the compile unit (for example, for IBM
products, it would be the PTF number).

+ Statement number

The last statement to run in the routine. The statement number appears only if
your routine was compiled with the options required to generate statement
numbers.

e Status

The reason Language Environment left the program or routine. The status can be
either call or exception.

Chapter 3. Using Language Environment debugging facilities 59

[7] Condition Information for Active Routines

This section displays the following information for all conditions currently active on
the call chain:

Statement showing failing routine and stack frame address of routine
Condition information block (CIB) address
Current condition, in the form of a Language Environment message for the

condition raised or a Language Environment abend code, if the condition was
caused by an abend

Location

For the failing routine, this is the program unit, entry routine, statement number,
and offset.

Machine state, which shows:

Instruction length counter (ILC)

Interruption code

Program status word (PSW)

Contents of GPRs 0-15

Storage dump near condition (2 hex-bytes of storage near the PSW)

These values are the current values at the time the condition was raised.

[8] Parameters, Registers, and Variables for Active Routines

For each active routine, this section shows:

Routine name and stack frame address
Arguments

For C/C++ and Fortran, arguments are shown here rather than with the local
variables. For COBOL, arguments are shown as part of local variables. PL/|
arguments are not displayed in the Language Environment dump.

Saved registers
This lists the contents of GPRs 0—15 at the time the routine transferred control.
Storage pointed to by the saved registers

Treating the saved contents of each register as an address, 32 bytes before and
64 bytes after the address shown.

Local variables

This section displays the local variables and arguments for the routine. This
section also shows the variable type. Variables are displayed only if the symbol
tables are available. To generate a symbol table and display variables, use the
following compile options:

— For C, use TEST(SYM).

— For C++, use TEST.

— For VS COBOL I, use FDUMP.

— For COBOL/370, use TEST(SYM).

— For COBOL for OS/390 & VM, use TEST(SYM).

— For Enterprise COBOL for z/OS and OS/390, use TEST(SYM)

— For Fortran, use SDUMP.

— For PL/I, arguments and variables are not displayed.

[9] Control Blocks for Active Routines

60 z/0S V1R5.0 Language Environment Debugging Guide

For each active routine controlled by the STACKFRAME option, this section lists
contents of related control blocks. The Language Environment-conforming language
determines which language-specific control blocks appear. The possible control
blocks are:

+ Stack frame

» Condition information block

» Language-specific control blocks

[10] Storage for Active Routines

This displays local storage for each active routine. The storage is dumped in
hexadecimal, with EBCDIC translations on the right side of the page. There can be
other information, depending on the language used. For C/C++ routines, this is the
stack frame storage. For COBOL programs, this is language-specific information,
WORKING-STORAGE, and LOCAL-STORAGE.

[11] Control Blocks Associated with the Thread

This section lists the contents of the Language Environment common anchor area
(CAA), thread synchronization queue element (SQEL) and dummy stack frame.
Other language-specific control blocks can appear in this section.

[12] Enclave Control Blocks

This section lists the contents of the Language Environment enclave data block
(EDB) and enclave member list (MEML). The information presented may vary
depending on which run-time options are set.

 If the POSIX run-time option is set to ON, this section lists the contents of the
mutex and condition variable control blocks, the enclave level latch table, and the
thread synchronization trace block and trace table.

« If DLLs have been loaded, this section shows information for each DLL including
the DLL name, load address, use count, writeable static area (WSA) address,
and the thread id of the thread that loaded the DLL.

» |If the HEAPCHK run-time option is set to ON, this section shows the contents of
the HEAPCHK options control block (HCOP) and the HEAPCHK element tables
(HCEL). A HEAPCHK element table contains the location and length of all
allocated storage elements for a heap in the order that they were allocated.

* When the call-level suboption of the HEAPHCK run-time option is set, any
unfreed storage, which would indicate a storage leak, would be displayed in this
area. The traceback could then be used to identify the program which did not
free the storage.

» If the TRACE run-time option is set to ON, this section shows the contents of the
Language Environment trace table.

Other language-specific control blocks can appear in this section.

[13] Enclave Storage

This section shows the Language Environment heap storage. For C/C++ and PL/I
routines, heap storage is the dynamically allocated storage. For COBOL programs,
it is the storage used for WORKING-STORAGE data items. This section also shows
the writeable static area (WSA) storage for program objects. Other
language-specific storage can appear in this section.

[14] Run-Time Options Report

Chapter 3. Using Language Environment debugging facilities 61

This section lists the Language Environment run-time options in effect when the
routine was executed.

[15] Process Control Blocks

This section lists the contents for the Language Environment process control block
(PCB), process member list (MEML), and if the POSIX run-time option is set to ON,
the process level latch table. Other language-specific control blocks can appear in
this section.

Debugging with specific sections of the Language Environment dump

The following sections describe how you can use particular blocks of the dump to
help you debug errors.

The tracebacks, condition information, and data values section
The CEE3DMP call with dump options TRACEBACK, CONDITION, and
VARIABLES generates output that contains a traceback, information about any
conditions, and a list of arguments, registers, and variables.

The traceback, condition, and variable information provided in the Language
Environment dump can help you determine the location and context of the error
without any additional information. The traceback section includes a sequential list
for all active routines and the routine name, statement number, and offset where the
exception occurred. The condition information section displays a message
describing the condition and the address of the condition information block. The
arguments, registers, and variables section shows the values of your arrays,
structures, arguments, and data during the sequence of calls in your application.
Static data values do not appear. Single quotes indicate character fields.

These sections of the dump are shown in [Figure 7 on page 50}

The upward-growing (non-XPLINK) stack frame section
The stack frame, also called dynamic save area (DSA), for each active routine is
listed in the full dump.

A stack frame chain is associated with each thread in the run-time environment and
is acquired every time a separately compiled procedure or block is entered. A stack
frame is also allocated for each call to a Language Environment service. All stack
frames are back-chained with a stopping stack frame (also called a dummy DSA)
as the first stack frame on the stack. Register 13 addresses the recently active
stack frame or a standard register save area (RSA). The standard save area back
chain must be initialized, and it holds the address of the previous save area. Not all
Language Environment-conforming compilers set the forward chain; thus, it cannot
be guaranteed in all instances. Calling routines establish the member-defined fields.

When a routine makes a call, registers 0—15 contain the following values:

* R1 is a pointer to parameter list or 0 if no parameter list passed.

* RO, R2-R11 is unreferenced by Language Environment. Caller’s values are
passed transparently.

* R12 is the pointer to the CAA if entry to an external routine.

* R13 is the pointer to caller’s stack frame.

* R14 is the return address.

* R15 is the address of the called entry point.

With an optimization level other than 0, C/C++ routines save only the registers used
during the running of the current routine. Non-Language Environment RSAs can be

62 z/0S V1R5.0 Language Environment Debugging Guide

in the save area chain. The length of the save area and the saved register contents
do not always conform to Language Environment conventions. For a detailed
description of stack frames Language Environment storage management, see

[Language Environment Programming Guidg. [Figure 8 shows the format of the

upward-growing stack frame.

Note: The Member-defined fields are reserved for the specific higher level

language.
00 Flags Member-defined
04 CEEDSABACK - Standard Save Area Back Chain
08 CEEDSAFWD - Standard Save Area Forward Chain
0C
CEEDSASAVE - GPRs 14, 15, 0-12
48 Member-defined
4C CEEDSANAB - Current Next Available Byte (NAB) in Stack
50 CEEDSAPNAB - End of Prolog NAB
54 Member-defined
58 Member-defined
5C Member-defined
60 Member-defined
64 Reserved for Debugging
68 Member-defined
6C CEESAMODE - Return Address of the Module That Caused
the Last Mode Switch
70 Member-defined
74 Member-defined
78 Reserved for Future Condition Handling
7C Reserved for Future Use

Figure 8. Upward-Growing (Non-XPLINK) Stack Frame Format

The downward-growing (XPLINK) stack frame section

[Figure 9 on page 64|shows the format of the downward-growing stack frame.

Chapter 3. Using Language Environment debugging facilities 63

Low
Addresses
Guard Page (4 KB)
Stack .
Pointer (R4) Stack Frames for called functions
+2048 Backchain
Environment
Entry Point
Return Address Savearea
R8 (48 bytes)
R9
R10
R11
R12
R13
R14
R15
+2096 Reserved (8 bytes)
+2104 Debug Area (4 bytes)
+2108 Arg Area Prefix (4 Bytes)
+2112 Argument Area:
Parm 1
Parm 2
Local (automatic) Storage
Saved FPRs Saved ARs
High
Addresses

Figure 9. Downward-Growing (XPLINK) Stack Frame Format

For detailed information about the downward-growing stack, register conventions
and parameter passing conventions, see |z/0S Language Environment
|Programming Guidd,

The Common Anchor Area

Each thread is represented by a common anchor area (CAA), which is the central
communication area for Language Environment. All thread- and enclave-related
resources are anchored, provided for, or can be obtained through the CAA. The
CAA is generated during thread initialization and deleted during thread termination.
When calling Language Environment-conforming routines, register 12 points to the
address of the CAA.

Use CAA fields as described. Do not modify fields and do not use routine
addresses as entry points, except as specified. Fields marked ‘Reserved’ exist for
migration of specific languages, or internal use by Language Environment.
Language Environment defines their location in the CAA, but not their use. Do not
use or reference them except as specified by the language that defines them.

[Figure 10 on page 65| shows the format of the Language Environment CAA.

64 z/0S V1R5.0 Language Environment Debugging Guide

-18

-0C - -01
000000

000004

000008

00000C
000010

000044

000074

000120
000124
00015C

0001A8

0001FO
0002AC
0002B0

0002B4
0002B8
0002BC
0002C0
0002C4

0002C8
00024C

0002D0
0002D4
0002D8

0002DC
0002E0
0002E4

n

n

CEECAAEYE CL8'CEECAA

Reserved

CEECAAFLAGO | Reserved | CEECAALANGP | Reserved
Reserved

CEECAABOS Start of Current Storage Segment
CEECAAEQS End of Current Storage Segment
Reserved 10 thru 43

CEECAATORC POSIX Thread-Level Return Code
Reserved - 48thru73

CEECAATOVF - Addr of Stack Overflow Routine
Reserved 78 thru 11F

CEECAAATTN - Addr of CEL Attention Handler
Reserved 124 thru 15B

CEECAAHLLEXIT - Flag for User Hook Exit
CEECAATHOOKS - Execute Hooks - 18 4-Byte Hooks
Reserved 1F0 thru 2AB

CEECAASYSTM | CEECAAHRDWR | CEECAASBSYS| CEECAAFLAG2

CEECAALEVEL | CEECAA_PM | Reserved

CAA Level ID
CEECAAGETLS - Addrof CEL Library Stack Mgr
CEECAACELV - Addr of CEL LIBVEC
CEECAAGETS - Addrof CEL Get Stack Stg Rtn
CEECAALBOS Start of Library Stack Stg Seg
CEECAALEOS End of Library Stack Stg Seg
CEECAALNAB Next Available Byte of Lib Stg
CEECAADMC - Addr of ESPIE Shunt Routine
CEECAAACD Reserved
CEECAAARS Reserved
CEECAAERR - Addr of the Current

Condition Information Block
CEECAAGETSX - Addr of CEL Stack Stg Extender
CEECAADDSA - Addr of the Dummy DSA
CEECAASECTSIZ - Vector Section Size

Figure 10. Common Anchor Area (Part 1 of 2)

Chapter 3. Using Language Environment debugging facilities

65

0002E8
0002EC
0002F0
0002F4
0002F8
0002FC

000300
000304

000308
00030C
000310
000314
000318
00031C
000320
000324

000328
00032C
000330
000334
000338
00033C

000344

000348
00034C

000354
000358
00035C

CEECAAPARTSUM -

Vector Partial Sum Number

0

0

CEECAASSEXPNT - Log of Vector Section Size

CEECAAEDB Addr of the EDB

CEECAAPCB Addr of the PCB

CEECAAEYEPTR Addr of the CAA Eyecatcher

CEECAAPTR Addr of this CAA

CEECAAGETS1 Stack Overflow for Non-DSA Save Area

CEECAASHAB Reserved

CEECAAPRGCK - Program Interrupt Code for CAADMC

CEECAAFLAGH Reserved

CEECAAURC - Thread Level Return Code

CEECAAESS End of Current User Stack

CEECAALESS End of Current Library Stack

CEECAAOGETS Overflow from User Stack

CEECAAOGETLS - Overflow from Library Stack

CEECAAPICICB Addr of the Preinit Compatibility
Control Block

CEECAARSRV2 Reserved

CEECAAGOSMR - Reserved Reserved

CEECAALEQV Addr of OpenEdition MVS Library Vector

CEECAA_SIGSCTR - SIGSAFE Counter

CEECAA_SIGSFLG - SIGSAFE Flags

CEECAATHDID - Thread ID

CEECAA_DCRENT - Reserved

CEECAA_DANCHOR - Reserved

CEECAA_CTOC Reserved

CEECAACICSRSN- CICS Reason Code

CEECAAMEMBR - Addr of Thread Member List

CEECAA_SIGNAL-STATUS - of Terminating Thread

Figure 10. Common Anchor Area (Part 2 of 2)

contains a list of CAA fields:

Table 7. List of CAA Fields

CAA Field

CEECAAFLAGO

Explanation

CAA flag bits. The bits are defined as follows:

Bit Description

0-5 Reserved

6 CEECAAXHDL. A flag used by the condition
handler. If the flag is set to 1, the application
requires immediate return/percolation to the
system on any interrupt or condition handler
event.

7 Reserved

66 z/0S V1R5.0 Language Environment Debugging Guide

Table 7. List of CAA Fields (continued)

CAA Field Explanation
CEECAALANGP PL/I language compatibility flags external to Language
Environment. The bits are defined as follows:
Bit Description
0-3 Reserved
4 CEECAATHFN. A flag set by PL/I to indicate a

PL/I FINISH ON-unit is active. If the flag is set to
1, no PL/I FINISH ON-unit is active. If the flag is
set to 0, a PL/I FINISH ON-unit could be active.

5-7 Reserved
CEECAABOS Start of the current storage segment.

This field is initially set during thread initialization. It
indicates the start of the current stack storage segment. It
is altered when the current stack storage segment is
changed.

CEECAAEQOS This field is used to determine if a stack overflow routine
must be called when allocating storage from the user
stack. Normally, the value of this field will represent the
end of the current user stack segment. However, its value
can also be zero to force the call of a stack overflow
routine for every allocation of storage from the user stack.
This field is used by function prologs that do not use
FASTLINK linkage conventions.

CEECAATORC Thread level return code. The thread level return code set
by CEESRC callable service.

CEECAATOVF Address of stack overflow routine.

CEECAAATTN Address of the Language Environment attention handling

routine. The address of the Language Environment
attention handling routine supports common run-time
environment’s polling code convention for attention

processing.

CEECAAHLLEXIT Address of the Exit List Control Block set by the HLL user
exit CEEBINT.

CEECAAHOOKS Hook area. This is the start of 18 fullword execute hooks.

Language Environment initializes each fullword to
X'07000000'. The hooks can be altered to support various
debugging hook mechanisms.

CEECAASYSTM Underlying operating system. The value indicates the
operating system supporting the active environment.

Value Operating System

0 Undefined. This value should not appear after
Language Environment is initialized.

1 Unsupported

3 z/OS

Chapter 3. Using Language Environment debugging facilites 67

Table 7. List of CAA Fields (continued)

CAA Field Explanation
CEECAAHRDWR Underlying hardware. This value indicates the type of
hardware on which the routine is running.
Value Hardware
0 Undefined. This value should not appear after
Language Environment is initialized.
1 Unsupported
2 System/370™, non-XA
3 System/370, XA
4 System/370, ESA
CEECAASBSYS Underlying subsystem. This value indicates the subsystem
(if any) on which the routine is running.
Value Subsystem
0 Undefined. This value should not occur after
Language Environment is initialized.
1 Unsupported
2 None. The routine is not running under a
Language Environment-recognized subsystem.
3 TSO
4 IMS
5 CICS
CEECAAFLAG2 CAA Flag 2.
Bit Description
0 Bimodal addressing is available.
1 Vector hardware is available.
2 Thread terminating.
3 Initial thread
4 Library trace is active. The TRACE run-time
option was set.
5 Reserved
6 CEECAA_ENQ_Wait_Interruptible. Thread is in
an enqueue wait.
7 Reserved
CEECAALEVEL Language Environment level identifier. This contains a
unique value that identifies each release of Language
Environment. This number is incremented for each new
release of Language Environment.
CEECAA_PM Image of current program mask.
CEECAAGETLS Address of stack overflow for library routines.
CEECAACELV Address of the Language Environment library vector. This

field is used to locate dynamically loaded Language
Environment routines.

68 z/0S V1R5.0 Language Environment Debugging Guide

Table 7. List of CAA Fields (continued)

CAA Field

Explanation

CEECAAGETS

Address of the Language Environment prolog stack
overflow routine. The address of the Language
Environment get stack storage routine is included in prolog
code for fast reference.

CEECAALBOS

Start of the library stack storage segment. This field is
initially set during thread initialization. It indicates the start
of the library stack storage segment. It is altered when the
library stack storage segment is changed.

CEECAALEOS

This field is used to determine if a stack overflow routine
must be called when allocating storage from the library
stack. Normally, the value of this field will represent the
end of the current library stack segment. However, its
value can also be zero to force the call of a stack overflow
routine for every allocation of storage from the library
stack. This field is used by function prologs that do not
use FASTLINK linkage conventions.

CEECAALNAB

Next available library stack storage byte. This contains the
address of the next available byte of storage on the library
stack. It is modified when library stack storage is obtained
or released.

CEECAADMC

Language Environment shunt routine address. Its value is
initially set to 0 during thread initialization. If it is nonzero,
this is the address of a routine used in specialized
exception processing.

CEECAAACD

Most recent CAASHAB abend code.

CEEAAABCODE

Most recent abend completion code.

CEECAAARS

Most recent CAASHAB reason code.

CEECAAARSNCODE

Most recent abend reason code.

CEECAAERR

Address of the current condition information block. After
completion of initialization, this always points to a condition
information block. During exception processing, the current
condition information block contains information about the
current exception being processed. Otherwise, it indicates
no exception being processed.

CEECAAGETSX

Address of the user stack extender routine. This routine is
called to extend the current stack frame in the user stack.
Its address is in the CEECAA for performance reasons.

CEECAADDSA

Address of the Language Environment dummy DSA. This
address determines whether a stack frame is the dummy
DSA, also known as the zeroth DSA.

CEECAASECTSIZ

Vector section size. This field is used by the vector math
services.

CEECAAPARTSUM

Vector partial sum number. This field is used by the vector
math services.

CEECAASSEXPNT

Log of the vector section size. This field is used by the
vector math services.

CEECAAEDB

Address of the Language Environment EDB. This field
points to the encompassing EDB.

CEECAAPCB

Address of the Language Environment PCB. This field
points to the encompassing PCB.

Chapter 3. Using Language Environment debugging facilities 69

Table 7. List of CAA Fields (continued)

CAA Field

Explanation

CEECAAEYEPTR

Address of the CAA eye catcher. The CAA eye catcher is
CEECAA. This field can be used for validation of the CAA.

CEECAAPTR

Address of the CAA. This field points to the CAA itself and
can be used in validation of the CAA.

CEECAAGETS1

Non-DSA stack overflow. This field is the address of a
stack overflow routine, which cannot guarantee that the
current register 13 is pointing at a stack frame. Register
13 must point, at a minimum, to a save area.

CEECAASHAB

ABEND shunt routine. Its value is initially set to zero
during thread initialization. If it is nonzero, this is the
address of a routine used in specialized exception
processing for ABENDs that are intercepted in the ESTAE
exit.

CEECAAPRGCK

Routine interrupt code for CEECAADMC. If CEECAADMC
is nonzero, and a routine interrupt occurs, this field is set
to the routine interrupt code and control is passed to the
address in CEECAAMDC.

CEECAAFLAG1

CAA flag bits. The bits are defined as follows:

Bit Description
0 CEECAASORT. A call to DFSORT™ is active.
1-7 Reserved

CEECAAURC

Thread level return code. This is the common place for
members to set the return codes for subroutine-to-
subroutine return code processing.

CEECAAESS

This field is used to determine if a stack overflow routine
must be called when allocating storage from the user
stack. Normally, the value of this field will represent the
end of the current user stack segment. However, its value
can also be zero to force the call of a stack overflow
routine for every allocation of storage from the user stack.
This field is used by function prologs that use FASTLINK
linkage conventions.

CEECAALESS

This field is used to determine if a stack overflow routine
must be called when allocating storage from the library
stack. Normally, the value of this field will represent the
end of the current library stack segment. However, its
value can also be zero to force the call of a stack overflow
routine for every allocation of storage from the library
stack. This field is used by function prologs that use
FASTLINK linkage conventions.

CEECAAOGETS

Overflow from user stack allocations.

CEECAAOGETLS

Overflow from library stack allocations.

CEECAARSRV1

Reserved.

CEECAAPICICB

Address of the preinitialization compatibility control block.

CEECAAOGETSX

User DSA exit from OPLINK.

CEECAARSRV2

Reserved.

CEECAAGOSMR

Go some more—Used CEEHTRAV multiple.

CEECAALEQV

This field is the address of the Language Environment
library vector for zZOS UNIX support.

70 z/OS V1R5.0 Language Environment Debugging Guide

Table 7. List of CAA Fields (continued)

CAA Field

Explanation

CEECAA_SIGSCTR

SIGSAFE counter.

CEECAA_SIGSFLG

SIGSAFE flags. SIGSAFE flags indicate the signal safety
of the library.

Bit Description

0 CEECAA_SIGPUTBACK. The signal cannot be
delivered, therefore the signal is put back to the
kernel.

1 CEECAA_SA_RESTART. Indicates that a signal

registered with the SA_RESTART flag interrupted
the last kernel call, and the signal catcher

returned.

2 Reserved

3 CEECAA_SIGSAFE. It is safe to deliver the
signal, while in library code.

4 CEECAA_CANCELSAFE. It is safe to deliver the

cancel signal, while in library code.

CEECAATHDID

Thread id. This field is the thread identifier.

CEECAA_DCRENT

DCE’s read/write static external anchor.

CEECAA_DANCHOR

DCE'’s per-thread anchor.

CEECAA_CTOC

TOC anchor for CRENT.

CEECAACICSRSN

CICS reason code from member language.

CEECAAMEMBR

Address of thread-level member list.

CEECAA_SIGNAL_STATUS

Signal status of the terminating thread member list.

The condition information block

The Language Environment condition manager creates a condition information
block (CIB) for each condition encountered in the Language Environment
environment. The CIB holds data required by the condition handling facilities and
pointers to locations of other data. The address of the current CIB is located in the

CAA.

For COBOL, Fortran, and PL/I applications, Language Environment provides
macros (in the SCEESAMP data set) that map the CIB. For C/C++ applications, the

macros are in leawi.h.

[Figure 11 on page 72| shows the condition information block.

Chapter 3. Using Language Environment debugging facilites 71

+0 Condition Information Block

Eye catcher

+4 Previous

Condition Information Block
+8 Most Recent

Condition Information Block
+C Size of Condition Version of Condition

Information Block Information Block

+10 Platform Identifier

3 = Language Environment

+18 Current Language Environment Condition
+24 Address of Machine State

Time of Interrupt
+28 Previous Language Environment Condition
+37 Condition Flags
+38 Handle Cursor
+44 Resume Cursor

+54 Physical Callee Stack Frame Pointer (handle cursor)

+58 | DSA format for Stack frame in the Handle Cursor

0 = non-XPLINK 1= XPLINK

+59 | DSA format for Physical CalleeStack frame (handle cursor)
+5A | (reserved)

+5B | (reserved)

b
L 9.8
2)

+B0 Status Flag 5 (64 = An SDWA is Associated
+B1 Status Flag 6 with the Condition
+B2 Status Flag 7 128 = Storage Condition)

+B4 Abend Code Word

Figure 11. Condition Information Block (Part 1 of 2)

72 7z/0S V1R5.0 Language Environment Debugging Guide

+B8

+BC

+C4

+C8

+CC

+D4

+D8

+DC

+E0

+E4

+EC

+F4

+F8

+104

Abend Reason Word

Abend Load Module Name

n

0

First Language Environment-Conforming Prolog

Save Area of the First
Language Environment-Conforming Prolog

Address of Save Area
at Time of EVENT

0

0

Address of Feedback Token
for Signaled Conditions

Address of Feedback Token
for Signaled Conditions

Member Function Code

Token Provided by CEEHDLR
or SF Address

0

12

Identification Code at
Time of Interrupt

0

12

Return or Action Code
From Condition Handler

n

0

Name of the Abnormal
Termination Exit in Control

Address of the SDWA
Associated with the Condition

n

0

Pointer to Language Environment's
Copy of the OpenEdition PPSD

Figure 11. Condition Information Block (Part 2 of 2)

The flags for Condition Flag 4:

2
4
8

The resume cursor has been moved
Message service has processed the condition
The resume cursor has been moved explicitly

The flags for Status Flag 5, Language Environment events:

1

2

4

8
32
64
128

Caused by an attention interrupt

Caused by a signaled condition

Caused by a promoted condition

Caused by a condition management raised TIU
Caused by a condition signaled via CEEOKILL ?
Caused by a program check

Caused by an abend

The flags for Status Flag 6, Language Environment actions:

2. The signaled-via-CEEOKILL flag is always set with the signaled flag; thus, a signaled condition can have a value of either 2 or 34.
(The value is 2 if the signaled condition does not come through CEEOKILL. If it comes through CEEOKILL, its value is 2+32=34.)

Chapter 3. Using Language Environment debugging facilities 73

6
2
4
128

DW=0r~N

Doing stack frame zero scan
H-cursor pointing to owning SF
Enable only pass (no condition pa
MRC type 1

Resume allowed

Math service condition

Abend reason code valid

SS)

The language-specific function codes for the CIB:

X1
X'2'
X'3'

For condition procedure
For enablement
For stack frame zero conditions

Using the machine state information block

The Language Environment machine state information block contains condition
information pertaining to the hardware state at the time of the error.
shows the machine state information block.

+0

+4

+8

+48

+50

0

0

Eye Catcher

Size of Area Level of Generation
1

General Purpose Registers
Registers 0 through 15

0

PSW at Time of Interrupt

0

Basic Extension of PSW
Instruction Legnth Code | Interrupt Code

)
T

+54

0

0

Page Fault Address

N

+58

0

Floating Point Registers
Float Registers 0 through 6

0

+A8

Reference stack frame pointer (non-zero only for XPLINK
alloca() routines -- flag bit X'80 is on) -- points to logical
caller's DSA)

+AC

+B0

Saved Register 7 from original DSA (non-zero only for
XPLINK alloca() routines -- flag bit X'80" is on)

(Reserved) DSA format Flags
0= XPLINK 80 - XPLINK alloca()
1 =Non- XPLINK |01 - WSA valid

+B4

Saved Writable Static Address(valid if flag bit X'01" is on)

R Y
T

b Y
LS9

+D0

Floating point registers 1, 3, 5, 7, 8-15

+130

Floating Point control register

Figure 12. Machine State Information Block

74 z/0S V1R5.0 Language Environment Debugging Guide

Multiple enclave dumps

If multiple enclaves are used, the dump service generates data and storage
information for the most current enclave and moves up the chain of enclaves to the
starting enclave in a LIFO order. For example, if two enclaves are used, the dump
service first generates output for the most current enclave. Then the service creates
output for the previous enclave. A thread terminating in a non-POSIX environment is
analogous to an enclave terminating because Language Environment Version 1
supports only single threads.

|Figure 13 on page 76| illustrates the information available in the Language
Environment dump and the order of information for multiple enclaves.

Chapter 3. Using Language Environment debugging facilites 75

Process

Enclave1
Thread 1
Main 1
subroutine
subroutine
subroutine

Enclave2

Thread 2
Main 2
subroutine
subroutine
subroutine

Language Environment

Language Environment

Entry Information
(CEE3DMP callsonly)

Information for Enclave 1

Information for Enclave 2

Traceback:
Callchainofroutines

Traceback:
Callchainofroutines

Condition Information for Active Routine:
Failing routine information

Condition Information for Active Routine:
Failing routine information

Arguments, Registers, andVariables for Active
Routines:
Symbolicdumpforroutines

Arguments, Registers, and Variables for Active
Routines:
Symbolicdump forroutines

Control Blocks for Active Routines:
DSAsforroutines
CIBsforroutines

Language-specific control blocks

Control Blocks for Active Routines:
DSAsforroutines
ClBsforroutines

Language-specific control blocks

Storage for Active Routines:
Language-specificinformation
Storage forroutines
Variables forroutines

Storage for Active Routines:
Language-specificinformation
Variables forroutines

Control Blocks Associated withthe Thread:
Commonanchorarea (CAA)
DummyDSA

Control Blocks Associated withthe Thread:
Commonanchorarea (CAA)
DummyDSA

Enclave Control Blocks:
Enclave datablock (EDB)
Enclave-levelmemberlist(MEML)

Enclave Control Blocks:
Enclave datablock (EDB)
Enclave-levelmemberlist(MEML)
Language-specific control blocks

Enclave Storage:
Heap storage for routines

Enclave Storage:
Heap storage forroutines

Process Control Blocks:
Process controlblock (PCB)
Process-levelmemberlist(MEML)
Language-specific control blocks

Process Control Blocks:
Process controlblock (PCB)
Process-levelmemberlist(MEML)
Language-specific control blocks

Figure 13. Language Environment Dump of Multiple Enclaves

76 z/OS V1R5.0 Language Environment Debugging Guide

Generating a system dump

A system dump contains the storage information needed to diagnose errors. You
can use Language Environment to generate a system dump through any of the
following methods:

TERMTHDACT(UAONLY, UATRACE, or UADUMP)
You can use these run-time options, with TRAP(ON), to generate a system
dump if an unhandled condition of severity 2 or greater occurs. For further
details regarding the level of dump information produced by each of the

TERMTHDACT suboptions, see [‘Generating a Language Environment
ump with TERMTHDACT” on page 41

TRAP(ON,NOSPIE) TERMTHDACT(UAIMM)
TRAP(ON,NOSPIE) TERMTHDACT(UAIMM) generates a system dump of
the user address space of the original abend or program interrupt prior to
the Language Environment condition manager processing the condition.

ABPERC(abcode)
The ABPERC run-time option specifies one abend code that is exempt from
the Language Environment condition handler. The Language Environment
condition handler percolates the specified abend code to the operating
system. The operating system handles the abend and generates a system
dump.

ABPERC is ignored under CICS.

Abend Codes in Initialization Assembler User Exit
Abend codes listed in the initialization assembler user exit are passed to
the operating system. The operating system can then generate a system
dump.

CEE3ABD
You can use the CEE3ABD callable service to cause the operating system
to handle an abend.

Refer to system or subsystem documentation for detailed system dump information.

The method for generating a system dump varies for each of the Language
Environment run-time environments. The following sections describe the
recommended steps needed to generate a system dump in a batch, IMS, CICS,
and z/OS UNIX shell run-time environments. Other methods may exist, but these
are the recommended steps for generating a system dump.

For details on setting Language Environment run-time options, see |z/OS Language|
|Environment Programming Guide

Steps for generating a system dump in a batch run-time environment

Perform the following steps to generate a system dump in a batch run-time
environment:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, UATRACE, or
UAIMM), and TRAP(ON). If you specify the suboption UAIMM then you must set
TRAP(ON,NOSPIE). The TERMTHDACT suboption determines the level of
detail of the Language Environment formatted dump. For further details on the
TERMTHDACT suboptions, see [‘Generating a Language Environment dump|
[with TERMTHDACT” on page 41

2. Include a SYSMDUMP DD card with the desired data set name and DCB
information:

Chapter 3. Using Language Environment debugging facilites 77

LRECL=4160, BLKSIZE=4160, and RECFM=FBS.
3. Rerun the program.

When you are done, you have a generated system dump in a batch run-time
environment.

Steps for generating a system dump in an IMS run-time environment

Perform the following steps to generate a system dump in an IMS run-time

environment:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, UATRACE, or
UAIMM), ABTERM(ABEND), and TRAP(ON). If you specify the suboption
UAIMM, then you must set TRAP(ON,NOSPIE). The TERMTHDACT suboption
determines the level of detail of the Language Environment formatted dump. For
further details on the TERMTHDACT suboptions, see [‘Generating a Language|
[Environment dump with TERMTHDACT” on page 41

Restriction: In an IMS environment, you can only use CEEUOPT, CEEDOPT,
or CEEROPT to change run-time options. CEEUOPT cannot be used by OS/VS
COBOL or non-Language Environment assembler.

2. Include a SYSMDUMP DD card with the desired data set name and DCB
information:

LRECL=4160, BLKSIZE=4160, and RECFM=FBS.
3. Rerun the program.

When you are done, you have a generated system dump in an IMS run-time
environment.

Steps for generating a system dump in a CICS run-time environment

Before you begin: Under CICS, a system dump provides the most useful
information for diagnosing problems. However, if you have a Language Environment
U4038 abend, CICS will not generate a system dump. In order to generate
diagnostic information for a CICS run-time environment with a Language
Environment U4038 abend, you must create a Language Environment U4039
abend. For instructions on how to create a Language Environment U4039 abend,
see [‘Steps for generating a Language Environment U4039 abend” on page 79

Perform the following steps to generate a system dump in a CICS run-time
environment:

1. Specify run-time options TERMTHDACT(UAONLY, UADUMP, or UATRACE),
ABTERM(ABEND), and TRAP(ON). The TERMTHDACT suboption determines
the level of detail of the Language Environment formatted dump. For further
details on the TERMTHDACT suboptions, see[‘Generating a Language]
[Environment dump with TERMTHDACT” on page 41|

2. Update the transaction dump table with the CICS supplied CEMT command:
CEMT SET TRD(40XX) SYS ADD
Result: You will see CEMT output.

Example:

STATUS: RESULTS - OVERTYPE TO MODIFY
Trd(4088) Sys Loc Max(999) Cur(0000)

3. Rerun the program.

When you are done, you have a generated system dump in a CICS run-time
environment.

78 z/0S V1R5.0 Language Environment Debugging Guide

Steps for generating a Language Environment U4039 abend

If you have a Language Environment U4038 abend, CICS will not generate a
system dump. In order to generate diagnostic information, you must create a
Language Environment U4039 abend by performing the following steps:

1. Specify DUMP=YES in CICS DFHSIT.
2. Relink your program by including CEEUOPT.

Restriction: CEEUOPT cannot be used by OS/VS COBOL or non-Language
Environment assembler.

3. Take CEECOPT from SCEESAMP and modify the Language Environment
run-time options TERMTHDACT(UAONLY, UATRACE, or UADUMP),
ABTERM(ABEND), and TRAP(ON).

Result: By setting these run-time options, a Language Environment U4039
abend occurs which generates a system dump.

4. Rerun the program.

Note: In the CICS run-time environment, the TERMTHDACT suboption UAIMM is
processed the same as UAONLY.

Steps for Generating a system dump in a zZ/OS UNIX shell
Perform the following steps to generate a system dump from a z/OS UNIX shell:
1. Specify where to write the system dump
* To write the system dump to a z/OS data set, issue the command:
export _BPXK_MDUMP=filename

where filename is a fully qualified data set name with DCB information:
LRECL=4160, BLKSIZE=4160, and RECFM=FBS.

Example:
export _BPXK_MDUMP=h1q.mydump

* To write the system dump to an HFS file, issue the command:
export _BPXK_MDUMP=filename

where filename is a fully qualified HFS filename.
Example:
export _BPXK_MDUMP=/tmp/mydump.dmp
2. Specify Language Environment run-time options:
export _CEE_RUNOPT="termthdact (suboption)"

where suboption = UAONLY, UADUMP, UATRACE, or UAIMM. If UAIMM is set,
TRAP(ON,NOSPIE) must also be set. The TERMTHDACT suboption determines
the level of detail of the Language Environment formatted dump. For further
details regarding the TERMTHDACT suboptions, see|“Generating a Language|
|Environment dump with TERMTHDACT” on page 41 |

3. Rerun the program.

When you are done, the system dump is written to the data set name or HFS file
name specified.

For additional BPXK_MDUMP information see [z/0S UNIX System Services
|Command Referencel

Chapter 3. Using Language Environment debugging facilites 79

Note: You can also specify the signal SIGDUMP on the kill command to generate a

system dump of the user address space. For more information regarding the
SIGDUMP signal, see [z70S UNIX System Services Command Reference,

Formatting and analyzing system dumps

You can use the interactive problem control system (IPCS) to format and analyze
system dumps. Language Environment provides an IPCS verbexit LEDATA that can
be used to format Language Environment control blocks.

For more information on using IPCS, refer to|zZ0S MVS IPCS User’s Guided,

Preparing to use the Language Environment support for IPCS

Guidelines: Use the following guidelines before you use IPCS to format Language
Environment control blocks:

Ensure that your IPCS job can find the CEEIPCSP member.

IPCS provides an exit control table with imbed statements to enable other
products to supply exit control information. The IPCS default table, BLSCECT,
normally in the SYS1.PARMLIB library, has the following entry for Language
Environment:

IMBED MEMBER(CEEIPCSP) ENVIRONMENT(IPCS)

The Language Environment-supplied CEEIPCSP member, installed in the
SYS1.PARMLIB library, contains the Language Environment-specific entries for
the IPCS exit control table.

Provide an IPCSPARM DD statement to specify the libraries containing the IPCS
control tables.

Example:

//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR

Ensure that your IPCS job can find the Language Environment-supplied
ANALYZE exit routines installed in the SYS1.MIGLIB library.

To aid in debugging system or address space hang situations, Language
Environment mutexes, latches and condition variables can be displayed if the
CEEIPSCP member you are using is updated to identify the Language
Environment ANALYZE exit, by including the following statement:

EXIT EP(CEEEANLZ) ANALYZE

Language Environment IPCS Verbexit — LEDATA

Use the LEDATA verbexit to format data for Language Environment. This verbexit
provides information about the following topics:

A summary of Language Environment at the time of the dump
Run-time Options

Storage Management Control Blocks

Condition Management Control Blocks

Message Handler Control Blocks

C/C++ Control Blocks

COBOL Control Blocks

80 z/0S V1R5.0 Language Environment Debugging Guide

Format

— Syntax
VERBEXIT LEDATA [’parameter[,parameter]...’]
Report Type Parameters:
[SUM]
[HEAP | STACK | SM]
[HPT(value)]
[CM]
[MH]
[CEEDUMP]
[ALL]
Data Selection Parameters:
[DETAIL | EXCEPTION]
Control Block Selection Parameters:
[CAA(caa-address)]
[DSA(dsa-address) |
[TCB(tcb-address)]
[ASID(address-space-id) |
[NTHREADS(value)]

Parameters

Report type parameters
Use these parameters to select the type of report. You can specify as many reports
as you wish. If you omit these parameters, the default is SUMMARY.

SUMmary
Requests a summary of the Language Environment at the time of the dump.
The following information is included:
+ TCB address
» Address Space Identifier
* Language Environment Release
* Active members
* Formatted CAA, PCB, RCB, EDB and PMCB
* Run-time Options in effect

HEAP | STACK | SM

HEAP
Requests a report on Storage Management control blocks pertaining to
HEAP storage, as well as a detailed report on heap segments. The detailed
report includes information about the free storage tree in the heap segment,
and information about each allocated storage element.

Note: Language Environment does not provide support for alternative
Vendor Heap Manager (VHM) data.

STACK
Requests a report on Storage Management control blocks pertaining to
STACK storage.

SM
Requests a report on Storage Management control blocks. This is the same
as specifying both HEAP and STACK.

Chapter 3. Using Language Environment debugging facilities 81

HPT(value)
Requests that the heappools trace (if available) be formatted. If the value is 0 or
* the trace for every heappools poolid is formatted. If the value is a single
number (1-12) the trace for the specific heappools poolid is formatted.

CM
Requests a report on Condition Management control blocks.

MH
Requests a report on Message Handler control blocks.

CEEdump
Requests a CEEDUMP-like report. Currently this includes the traceback, the
Language Environment trace, and thread synchronization control blocks at
process, enclave and thread levels.

ALL
Requests all above reports, as well as C/C++ and COBOL reports.

Data selection parameters: Data selection parameters limit the scope of the data
in the report. If no data selection parameter is selected, the default is DETAIL.

DETail
Requests formatting all control blocks for the selected components. Only
significant fields in each control block are formatted.

Note: For the Heap and Storage Management Reports, the DETAIL parameter
will provide a detailed heap segment report for each heap segment in
the dump. The detailed heap segment report includes information on the
free storage tree in the heap segments, and all allocated storage
elements. This report will also identify problems detected in the heap
management data structures. For more information about the Heap
Reports, see [‘Understanding the HEAP LEDATA output” on page 98

EXCeption
Requests validating all control blocks for the selected components. Output is
only produced naming the control block and its address for the first control
block in a chain that is invalid. Validation consists of control block header
verification at the very least.

Note: For the Summary, CEEDUMP, C/C++, and COBOL reports, the
EXCEPTION parameter has not been implemented. For these reports,
DETAIL output is always produced.

Control block selection parameters: Use these parameters to select the CAA
and DSA control blocks used as the starting points for formatting.

CAA(caa-address)
specifies the address of the CAA. If not specified, the CAA address is obtained
from the TCB.

DSA(dsa-address)
specifies the address of the DSA. If not specified, the DSA address is assumed
to be the register 13 value for the TCB.

TCB(tcb-address)
specifies the address of the TCB. If not specified, the TCB address of the
current TCB from the CVT is used.

82 2z/0S V1R5.0 Language Environment Debugging Guide

ASID(address-space-id)

specifies the hexadecimal address space id. If not specified, the IPCS default
address space id is used. This parameter is not needed when the dump only

has one address space.

NTHREADS(value)

specifies the number of TCBs for which the traceback will be displayed. If
NTHREADS is not specified, value will default to (1). If value is specified as
asterisk (*), all TCBs will be displayed.

| Understanding the HEAPPOOLS trace output

HPT(5)

B e e e T T S e R R R R R e R R R R R Rk 2

EE R R R R R R R R R R R e

LANGUAGE ENVIRONMENT DATA

Language Environment Product 04 V01 R05.00

[1] Heap Pool Trace Table

[2] POOLID: 00000005 ASID: 010B AVAILABLE ENTRIES: 6 OF 6

[3] Timestamp: 2003/09/03 21:01:32.828075

Type: FREE Cell Address: 20453850 Cpuid: 01

[4] CALL NAME
CEEVFQT
foo8
foo7
foo6
foob
foo4
foo3
foo2
fool
main

CALL ADDRESS
1FF144A0
1FFO10B8
1FFO11D8
1FFO12F8
1FF01418
1FFO1538
1FFO01658
1FFO1778
1FFO1898
1FFOOAES8

Timestamp: 2003/09/03 21:01:32.828074

CALL NAME
CEEVFQT
foo9
foo8
foo7
foo6
foob
foo4
foo3
foo2
fool

CALL ADDRESS
1FF144A0
1FFOOF98
1FFO10B8
1FFO11D8
1FFO12F8
1FF01418
1FFO1538
1FF01658
1FFO1778
1FF01898

Timestamp: 2003/09/03 21:01:32.819909
Type: GET Cell Address: 20453C58 Cpuid: 08 Tcbh: 008D6A68

CALL NAME
CEEVGQT
foo9
foo8
foo7
foo6
foob
foo4
foo3
foo2
fool

I
|
I
I
I
I
|
I
|
I
I
I
I
|
I
|
I
I
I
I
|
I
|
I
I
I
I Type: FREE Cell Address: 20453C58 Cpuid: 01
|
I
|
I
I
|
I
|
I
I
I
I
|
I
|
I
I
I
I
|
I
|
I
I
I
I
|

CALL ADDRESS
1FF14CFO
1FFOOF98
1FFO10B8
1FFO11D8
1FFO12F8
1FF01418
1FFO01538
1FF01658
1FFO1778
1FF01898

Timestamp: 2003/09/03 21:01:32.819907

Tcb: 008D6A68

CALL OFFSET
00000000
0000009E
00000080
00000080
00000080
00000080
00000080
00000080
00000080
00000000

Tcb: 008D6A68

CALL OFFSET
00000000
0000009E
00000080
00000080
00000080
00000080
00000080
00000080
00000080
00000000

CALL OFFSET
00000000
00000068
00000080
00000080
00000080
00000080
00000080
00000080
00000080
00000000

Chapter 3. Using Language Environment debugging facilities 83

Type: GET Cell Address: 20453850 Cpuid: 08 Tcbh: 008D6A68

CALL NAME CALL ADDRESS CALL OFFSET
CEEVGQT 1FF14CFO 00000000
foo8 1FFO10B8 00000068
foo7 1FFO11D8 00000080
foob 1FFO12F8 00000080
foob 1FFO1418 00000080
foo4 1FFO1538 00000080
foo3 1FF01658 00000080
foo2 1FFO1778 00000080
fool 1FFO1898 00000080
main 1FFOOAE8 00000000

Timestamp: 2003/09/03 21:01:32.819818
Type: GET Cell Address: 20453448 Cpuid: 08 Tcb: 008D6A68

CALL NAME CALL ADDRESS CALL OFFSET
CEEVGQT 1FF14CFO 00000000
setlocale 203AEB10 0000018C
tzset 20300CE8 0000059C
_cinit 201EF588 00002EDC
CEEZINV 200E27D0O 00000000

Timestamp: 2003/09/03 21:01:32.819805
Type: GET Cell Address: 20453040 Cpuid: 08 Tcb: 008D6A68

CALL NAME CALL ADDRESS CALL OFFSET
CEEVGQT 1FF14CFO 00000000
setlocale 203AEB10 000000FC
tzset 20300CE8 0000059C
_cinit 201EF588 00002EDC
CEEZINV 200E27D0O 00000000

Exiting Language Environment Data
[1] HEAPPOOLS trace header information.

[2] Information includes the number of the pool (POOLID) which is currently being
formatted, the ASID, and the number of entries formatted and the total number of
entries taken.

Note: The trace wraps for each poolid after 1024 enties have been taken.

[3] The time this trace entry was taken. Note the trace entries are formatted in
reverse order (most recent trace entry first).

[4] The individual trace entry.

* The TYPE - GET or FREE

* The Cell within the pool being acted upon

» The CPU and TCB which requested or freed the cell

» A traceback at the time of the requested. The number of entries in this traceback
is limitted by the HEAPCHK run-time option

Understanding the Language Environment IPCS verbexit LEDATA

output

The Language Environment IPCS Verbexit LEDATA generates formatted output of
the Language Environment run-time environment control blocks from a system
dump. |Figure 14 on page 85| illustrates the output produced when the LEDATA
Verbexit is invoked with the ALL parameter. The system dump being formatted was
obtained by specifying the TERMTHDACT(UADUMP) run-time option when running
the program CELSAMP in|Figure 5 on page 46| “Sections of the Language

84 z/0S V1R5.0 Language Environment Debugging Guide

[Environment LEDATA verbexit formatted output” on page 95| describes the

information contained in the formatted output. Ellipses are used to summarize some

sections of the dump.

For easy reference, the sections of the following dump are numbered to correspond

with the descriptions in[“Sections of the Language Environment LEDATA verbexi

formatted output” on page 95

IP VERBEXIT LEDATA 'ALL CAA(060F0200) DSA(07402968)

LANGUAGE ENVIRONMENT DATA

Language Environment Productt 04 VO1 R03.00

[11TCB: 006E7378 LE Level: 0D ASID: 001F

[2]Active Members: C/C++

[31+600000
+000044
+00015C
+0001A4
+0001B0O
+0001BC
+0001C8
+0001D4
+0001F0
+000210
+000258
+000260
+000268
+000270
+000278
+0002AC
+0002B1
+0002C0O
+0002CC
+0002D8
+0002E4
+0002EC
+0002F8
+000304
+000314
+000320
+000330
+00033C
+000348
+000354
+00035C
+000364
+000370
+00037C
+000390
+00039C
+0003A4
+0003B0
+0003BC
+0003C4
+0003D0
+0003DC
+000430
+00043C
+000445
+000448
+00045C
+0004A4

FLAGO: 00 LANGP: 08 BO $:00022000 E0S:00000000
TORC:00000000 TOVF:800136D8 ATTN:063186E8
HLLEXIT:00000000 HOO0K:50C0D064 05C058CO CO0605CC

DIMA:00008B58 ALLOC:0700C3C8 STATE:0700C3C8
ENTRY:0700C3C8 EXIT:0700C3C8 MEXIT:0700C3C8
LABEL:0700C3C8 BCALL:0700C3C8 ACALL:0700C3C8
D0:0700C3C8 IFTRUE:0700C3C8 IFFALSE:0700C3C8
WHEN:0700C3C8 OTHER:0700C3C8 CGOT0:0700C3C8
CGENE:0631D7A4 CRENT:067C68F8 CTHD:0631BDFC
EDCV:8661466C CEDB:0631CD54 EDCOV:0660F154
TCASRV_USERWORD: 00000000 TCASRV_WORKAREA:06318038
TCASRV_GETMAIN:00000000 TCASRV_FREEMAIN:00000000
TCASRV_LOAD:8000E018 TCASRV_DELETE:8000DF38
TCASRV_EXCEPTION: 00000000 TCASRV_ATTENTION: 00000000
TCASRV_MESSAGE :00000000 LWS:00017630 SAVR:0656BA3A
SYSTM:03 HRDWR:03 SBSYS:02 FLAG2:BO LEVEL:0D
PM:04 GETLS:00011318 CELV:00018038 GETS:00011408
LB0S:00021000 LE0S:00000000 LNAB:00021018

DMC: 00000000 ABCODE:00000000 RSNCODE:00000000
ERR:00023308 GETSX:000129E0 DDSA:00017428
SECTSIZ:00000000 PARTSUM: 00000000

SSEXPNT:00000000 EDB:000159D0 PCB:00015560
EYEPTR:00016AA8 PTR:00016AC0O GETS1:00012AD8

SHAB: 00000000 PRGCK:00000004 FLAGL:00 URC:00000000
ESS:00000000 LESS:00000000 0GETS:00013200
0GETLS:00000000 PICICB:00000000 GETSX:00000000 GOSMR:0000
LEOV:067C5038 SIGSCTR:00000000 SIGSFLG:00000000
THDID:06769920 00000000 DCRENT: 00000000

DANCHOR: 00000000 CT0C:00000000 RCB:00014918
CICSRSN:00000000 MEMBR:000174C8

SIGNAL_STATUS:00000008 HCOM_REG7 : 00000000
STACKFLOOR:7FFFFFFF HPGETS:00000000 EDCHPXV:00000000
FOR1:00000000 FOR2:00000000 THREADHEAPID: 00017304
SYS_RTNCODE: 00000000 SYS_RSNCODE:00000000 GETFN:0646A3A0

SIGNGPTR:00016E54 SIGNG:00000001 FORDBG: 00000000
AB_STATUS:00 STACKDIRECTION:00 AB_GRO:00000000
AB_ICD1:00000000 AB_ABCC:00000000 AB_CRC:00000000
GTS:0000FC18 LERN5N1:00000000 HERP:063CF7C8

USTKBOS :00000000 USTKEOS :00000000

USERRTN:00000000 UDHOOK:A7F4FEE8 A7F401A0

HPXV_B:064DB218 HPXV_M:064DC7CO HPXV_L:064E1170
HPXV_0:064E1260 SMCB:000171F0 ERRCM: 063186A0

MIB_PTR:00000000 STV:00 A_ISA:00000000
ISA_SIZE:00000000 PTATPTR: 00000000 SIGSSDSA1:00
SIGSSDSA2:00 STACKUNSTABLE:00 STACK_FLAG:00
SQELADDR:0631A618 VBA:00000000 TCS:068ECE78
THDSTATUS: 00000000 TICB_PTR:063199C8

FWD_CHAIN:00016ACO BKWD_CHAIN:00016ACO

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 1 of 11)

Chapter 3. Using Language Environment debugging facilities

85

[4]1CEEPCB: 00015560
+000000 PCBEYE:CEEPCB SYSTM: 03 HRDWR: 03 SBSYS:02 FLAG2:98
+00000C DBGEH:00000000 DMEMBR:00015790 ZLOD:064D3D20
+000020 ZDEL:064CB928 ZGETST:064D1ABO ZFREEST:064D15E0

+00002C LVTL:0630B978 RCB:00014918 SYSEIB:00000000

+000038 PSL:00000000 PSA:000159D0 PSRA:064D1908

+000044 OMVS_LEVEL:7F000000 PCB_CHAIN:00000000

+00004C PCB_VSSFE:00013304 PCB_PRFEH:00000000

+000084 LPKA_LODTYP:00000003 IMS:00000000 ABENDCODE : 00000000
+000090 REASON:00000000 F3456:000080C2 MEML:00015778

+00009C MEMBR:00015790 PCB_EYE:00000000 PCB_BKC:00005F78
+0000A8 PCB_FWC:00000000 PCB_R14:863002BE

+0000BO PCB_R15:00006EA8 PCB_RO:7D000016 PCB_R1:00005FE8

+0000BC PCB_R2:06300080 PCB_R3:00000000 PCB_R4:00000000
+0000C8 PCB_R5:00000000 PCB_R6:00000000 PCB_R7:00000000
+0000D4 PCB_R8:063040B0 PCB_R9:006E7710 PCB_R10:00000000

+0000EO PCB_R11:863001F2 PCB_R12:00000000 CELV24:00018038
+0000EC CELV31:0630ED20 SLDR:8000E108 SECTSIZ:00000000

+0000F8 PARTSUM:00000000 SSEXPNT:00000000 BMPS:06321FC8
+000104 BMPE:0639A708 BLEHL:0630B450 BCMXB:00014B08 BSTV:02
+000111 PM_BYTE:00 INI_AMODE:00 FLAGS1:28 ISA:06306000

+000118 ISA SIZ:00018A5C SRV_CNT:00000000

+000120 SRV_UWORD:00000000 WORKAR:00000000 LOAD:0000E6CO

+00012C DELETE:0000E338 GETSTOR:00010430 FREESTOR:0000FF30

+000138 EXCEPT:00000000 ATTN:00000000 MSGS:00000000
+000144 ABEND:000080D8 MSGOU:0000B2B8 GLAT:0642A090
+000150 RLAT:06452B40 ELAT:06423398 1PTQ:064634B0
+00015C 1ENV:06462680 DBG_LODTYP: FFFFFFFF DUMMY_STK:06306008

+000168 DUMMY_LIB:00014000 DUMMY_CAA:0630A010

+000170 TST_LVL:FFFFFFFF GETCAA:00014D38 SETCAA:00014D40
+00017C LLTPTR:0630AD30 AUE:00000000 RC:00000000

+000188 REASON:00000000 RC_MOD:00000000 AUE_UWORD:00000000
+000194 FB_TOKEN:............ EOV:067C5038 PPA:068D1F44
+0001A8 PPA_SIZ:00000A00 BELOW:00014000 BELOW_LEN:00003940

+0001B4 PICB:06315228 UTL1:06315238 ZINA:864D26A0
+0001CO ZINB:000138D8 XPLINKFLAGS:00 FLAGS5:80
+0001D4 LANGINIT:00000001 00000000 00000000 00000000 0000
+0001E8 NUMINIT:00000001 LASTINIT:00000003

+0001FO LANGREUSE:00000000 00000000 00000000 00000000 0000
+000202 REUSEMEMS:00000000 00000000 00000000 60000000 0000

CEEMEML: 00015790

+000000 MEMLDEF:........ EXIT:063A9C58 LLVTL:00000000
[5]CEERCB: 00014918
+000000 EYE:CEERCB SYSTM: 03 HRDWR: 03 SBSYS:02 FLAGS:80
+000014 DMEMBR:0630AC08 ZLOD:064D5550 ZDEL:064CD008
+000020 ZGETST:064D1ABO ZFREEST:064D15EQ VERSION_ID:03020A00
[6]CEEEDB: ©00159D0
+000000 EYE:CEEEDB FLAG1:D7 BIPM:00 BPM: 00
+00000B CREATOR_ID:01 MEMBR:00016980 OPTCB:00016058
+000014 URC:00000000 RSNCD:00000000 DBGEH:00000000
+000020 BANHP:00015E98 BBEHP:00015EC8 BCELV:00018038
+00002C PCB:00015560 ELIST:00000000 PL_ASTRPTR:00014808
+000038 DEFPLPTR:00015AF0 CXIT_PAGE:00000000

+000040 DEBUG_TERMID:00000000 PARENT:00000000 R13_PARENT:00005F78
+000054 LEOV:067C5038 ENVAR:063182E0 ENVIRON:00015A28

+000060 CEEOSIGR:0000DAF8 0TRB:068D1000 PSA31:0631EA5C
+00006C PSL31:00000000 PSA24:00017940 PSL24:00000000

+000078 PSRA:064D1710 CAACHAING:00016ACO FLAGIA:90

+000084 CEEOSGR1:0000DE66 MEMBERCOMPAT1:00

+000090 THREADSACTIVE:00000001 CURMSGFILEDCBPTR:00014B88
+000098 CEEINT_INPUT_R1:00005FE8 LAST_RBADDR:006E7A50

+0000A0 LAST_RBCNT:00000001

CEEMEML: 00016980
+000000 MEMLDEF:........ EXIT:063A9C58 LLVTL:00000000

[71PMCB: 06318008
+000000 EYE:PMCB PREV$:00000000 NEXT$:00000000
+000010 LVT_CURR$:00018038 LLT_CURR$:068D47F8 FLAGS :A0000000

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 2 of 11)

86 z/0S V1R5.0 Language Environment Debugging Guide

[8]Language Environment Run-Time Options in effect.

LAST WHERE SET Override OPTIONS
INSTALLATION DEFAULT OVR ABPERC (NONE)
INSTALLATION DEFAULT OVR ABTERMENC (ABEND)
INSTALLATION DEFAULT OVR NOAIXBLD
INSTALLATION DEFAULT OVR ALL31(ON)
INSTALLATION DEFAULT OVR ANYHEAP (00016384,00008192,ANY , FREE)
INSTALLATION DEFAULT OVR NOAUTOTASK
INSTALLATION DEFAULT OVR BELOWHEAP (00008192,00004096 , FREE)
INSTALLATION DEFAULT OVR CBLOPTS (ON)
INSTALLATION DEFAULT OVR CBLPSHPOP (ON)
INSTALLATION DEFAULT OVR CBLQDA(OFF)
INSTALLATION DEFAULT OVR CHECK(ON)
INSTALLATION DEFAULT OVR COUNTRY (US)
INSTALLATION DEFAULT OVR NODEBUG
INSTALLATION DEFAULT OVR DEPTHCONDLMT (00000016)
INSTALLATION DEFAULT OVR ENVAR("")
INSTALLATION DEFAULT OVR ERRCOUNT (60000000)
INSTALLATION DEFAULT OVR ERRUNIT (00000006)
INSTALLATION DEFAULT OVR FILEHIST
INSTALLATION DEFAULT OVR FILETAG(NOAUTOCVT,NOAUTOTAG)
DEFAULT SETTING OVR NOFLOW
INSTALLATION DEFAULT OVR HEAP(00032768,00032768,ANY
KEEP,00008192,00004096)
PROGRAMMER DEFAULT OVR HEAPCHK (ON, 00000001 ,00000000,00000000)
INSTALLATION DEFAULT OVR HEAPPOOLS (OFF,
00000008,00000010,
00000032,00000010,
00000128,00000010,
00000256,00000010,
00001624,00000010,
00002048,00000010)
INSTALLATION DEFAULT OVR INFOMSGFILTER(OFF)
INSTALLATION DEFAULT OVR INQPCOPN
INSTALLATION DEFAULT OVR INTERRUPT (OFF)
INSTALLATION DEFAULT OVR LIBRARY (SYSCEE)
INSTALLATION DEFAULT OVR LIBSTACK(00004096,00004096, FREE)
INSTALLATION DEFAULT OVR MSGFILE(SYSOUT ,FBA ,00000121,00000000,
NOENQ)
INSTALLATION DEFAULT OVR MSGQ(00000015)
INSTALLATION DEFAULT OVR NATLANG (ENU)
IGNORED OVR NONONIPTSTACK(See THREADSTACK)
INSTALLATION DEFAULT OVR OCSTATUS
INSTALLATION DEFAULT OVR NOPC
INSTALLATION DEFAULT OVR PLITASKCOUNT (00000020)
PROGRAMMER DEFAULT OVR POSIX(ON)
INSTALLATION DEFAULT OVR PROFILE(OFF,"")
INSTALLATION DEFAULT OVR PRTUNIT (00000006)
INSTALLATION DEFAULT OVR PUNUNIT (00000007)
INSTALLATION DEFAULT OVR RDRUNIT(00000005)
INSTALLATION DEFAULT OVR RECPAD (OFF)
INSTALLATION DEFAULT OVR RPTOPTS (OFF)
PROGRAMMER DEFAULT OVR RPTSTG(ON)
INSTALLATION DEFAULT OVR NORTEREUS
INSTALLATION DEFAULT OVR RTLS (OFF)
INSTALLATION DEFAULT OVR NOSIMVRD
INSTALLATION DEFAULT OVR STACK(00131072,00131072,ANY ,KEEP,
00524288,00131072)
INSTALLATION DEFAULT OVR STORAGE (NONE,,NONE , NONE, 00008192)
PROGRAMMER DEFAULT OVR TERMTHDACT (UADUMP, ,00000096)
INSTALLATION DEFAULT OVR NOTEST (ALL,*,PROMPT, INSPPREF)
INSTALLATION DEFAULT OVR THREADHEAP (00004096 ,00004096 ,ANY ,KEEP)
INSTALLATION DEFAULT OVR THREADSTACK (OFF,00004096,00004096 ,ANY , FREE,
00131072,00131072)
PROGRAMMER DEFAULT OVR TRACE (ON, 01048576 ,NODUMP, LE=00000001)
INSTALLATION DEFAULT OVR TRAP(ON, SPIE)
INSTALLATION DEFAULT OVR UPSI (00000000)
INSTALLATION DEFAULT OVR NOUSRHDLR ()
INSTALLATION DEFAULT OVR VCTRSAVE (OFF)
INSTALLATION DEFAULT OVR VERSION()
INSTALLATION DEFAULT OVR XPLINK(OFF)
INSTALLATION DEFAULT OVR XUFLOW (AUTO)

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 3 of 11)

Chapter 3. Using Language Environment debugging facilities

87

[9]Heap Storage Control Blocks

ENSM: 00015E50
+000000 EYE_CATCHER:ENSM ST_HEAP_ALLOC_FLAG:00000000
+000008 ST_HEAP_ALLOC_VAL:00000000 ST_HEAP_FREE_FLAG:00000000
+000010 ST_HEAP_FREE_VAL:00000000 REPORT_STORAGE:00015F2C
+000018 UHEAP:C8D7C3C2 068D5000 068D5000 00008000 00008000 00002000 00001000 00000000 00
+000048 AHEAP:C8D7C3C2 067C7000 068F5000 00004000 00002000 00002000 00001000 00000000 00
+000078 BHEAP:C8D7C3C2 00042000 00042000 00002000 00001000 00002000 00001000 80000000 00
+0000A8 ENSM_ADDL_HEAPS:068F0200
STSB: 00015F2C
+000000 EYE_CATCHER:STSB CRHP_REQ:00000002 DSHP_REQ: 00000001
+00000C IPT_INIT_SIZE:00020000 NONIPT_INIT_SIZE:00020000
+000014 IPT_INCR_SIZE:00020000 NONIPT_INCR_SIZE:00020000
+00001C THEAP_MAX_STOR:00000000
Enclave Level Stack Statistics
SKSB: 00015FC4
+000000 MAX_ALLOC:00008CF8 CURR_ALLOC: 00003460
+000008 LARGEST:00008CF8 GETMAINS:00000001
+000010 FREEMAINS:00000000
SKSB: 00015FEC
+000000 MAX_ALLOC:00001978 CURR_ALLOC: 00000000
+000008 LARGEST:00000DB8 GETMAINS:00000002
+000010 FREEMAINS:00000000
SKSB: 00015FD8
+000000 MAX_ALLOC:00000330 CURR_ALLOC:00000330
+000008 LARGEST:00000330 GETMAINS:00000001
+000010 FREEMAINS:00000000

User Heap Control Blocks

HPCB: 00015E68
+000000 EYE_CATCHER:HPCB FIRST:068D5000 LAST:068D5000
HPSB: 00015F4C
+000000 BYTES_ALLOC:00000C38 CURR_ALLOC:00000C38
+000008 GET_REQ:00000007 FREE_REQ:00000000
+000010 GETMAINS:00000001 FREEMAINS :00000000
HPSB: 00016000
+000000 BYTES_ALLOC:00000000 CURR_ALLOC: 00000000
+000008 GET_REQ:00000000 FREE_REQ:00000000
+000010 GETMAINS:00000000 FREEMAINS :00000000
HANC: 068D5000
+000000 EYE_CATCHER:HANC NEXT:00015E68 PREV:00015E68
+00000C HEAPID:00000000 SEG_ADDR:068D5000 ROOT_ADDR:068D5C38
+000018 SEG_LEN:00008000 ROOT_LEN:000073C8

This is the last heap segment in the current heap.
Free Storage Tree for Heap Segment 068D5000
Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length
0 068D5C38 000073C8 00000000 00000000 00000000 00000000 00000000
Map of Heap Segment 068D5000
To display entire segment: IP LIST 068D5000 LEN(X'00008000') ASID(X'001F"')

068D5020:
068D5028:

Allocated storage element, 1ength=00000110. To display: IP LIST 068D5020 LEN(X'00000110') ASID(X'0O1F')
068D5138 068D5320 068D535D 068D539A 068D53D7 068D5414 068D5451 068D548E |....vu.....) Povivniiinnnn |

068D5130:
068D5138:

Allocated storage element, 1ength=00000828. To display: IP LIST 068D5130 LEN(X'00000828') ASID(X'0O1F')
00000000 00000000 0000000 0000000 0OOAOOO 00RO OO0 00000000 |

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 4 of 11)

88 z/0S V1R5.0 Language Environment Debugging Guide

[9]Heap Storage Control Blocks

068D5958:
068D5960:

068D5BA8:
068D5BBO:

068D5BEO:
068D5BES:

068D5C18:
068D5C20: 068FO180 00000000
068D5C28:

068D5C30: 068FO1CO 00000000

Allocated storage element, 1ength=00000250. To display: IP LIST 068D5958 LEN(X'00000250') ASID(X'001F')
00000000 00000000 00000000 00000000 00000000 000000 00000000 00000000 |

Allocated storage element, 1ength=00000038. To display: IP LIST 068D5BA8 LEN(X'00000038') ASID(X'001F')
C3C4D3D3 00000000 COOOO000 0000OOOO0 06300000 063000CO 067C68F8 00000704 |CDLL @.8....

Allocated storage element, 1ength=00000038. To display: IP LIST 068D5BEOQ LEN(X'00000038') ASID(X'001F')
C3C4D3D3 068D5BBO 80000000 00000000 068EDOOO O68EDOC8 0631EE80 0000017A |CDLL..$ Hoovvouo

Allocated storage element, 1ength=00000010. To display: IP LIST 068D5C18 LEN(X'00000010') ASID(X'001F')

Allocated storage element, 1ength=00000010. To display: IP LIST 068D5C28 TEN(X'OOOOOOIO') ASID(X'0O1F')

068D5C38: Free storage element, 1ength=000073C8. To display: IP LIST 068D5C38 LEN(X'000073C8') ASID(X'0OLF')
Summary of analysis for Heap Segment 068D5000:

Amounts of identified storage: Free:000073C8 Allocated:00000C18 Total:00007FEQ

Number of identified areas Free: 1 Allocated: 7 Total: 8

00000000 bytes of storage were not accounted for.

No errors were found while processing this heap segment.

This is the Tast heap segment in the current heap.

[10]Stack Storage Control Blocks

SMCB: 000171F0
+000000 EYE_CATCHER:SMCB US_EYE_CATCHER:USTK USFIRST:00022000
+00000C USLAST:00022000 USBOS:00022000 USE0S:00042000
+000018 USNAB:000253C0 USINITSZ:00020000 USINCRSZ:00020000
+000024 USANYBELOW:80000000 USKEEPFREE: 00000000 USPOOL:80000002
+000030 USPREALLOC:00000001 US_BYTES_ALLOC:00008CF8
+000038 US_CURR_ALLOC:00003460 US_GETMAINS:00000000
+000040 US_FREEMAINS:00000000 US_OPLINK:00 LS_THIS_IS:LSTK
+00004C LSFIRST:00021000 LSLAST:00021000 LSB0S:00021000
+000058 LSE0S:00022000 LSNAB: 00021018 LSINITSZ:00001000
+000064 LSINCRSZ:00001000 LSANYBELOW:80000000
+00006C LSKEEPFREE:00000001 LSPOOL:80000001 LSPREALLOC:00000001
+000078 LS_BYTES_ALLOC:00000330 LS_CURR_ALLOC:00000330
+000080 LS_GETMAINS:00000000 LS_FREEMAINS:00000000 LS_OPLINK:00
+00008C RSB0S:0001FO00 RSE0S:00021000 RSIZE:00002000
+000098 RSACTIVE:00000000 SA_REGO0:00025460
+0000A0 SA_REGO1:000253C0O SA_REGO2:00023308
+0000A8 SA_REG03:00000003 SA_REGO4:00016058
+0000BO SA_REGO5:00000010 SA_REGO6:000230D8
+0000B8 SA_REGO7:00023C9F SA_REGO8:063CECCD
+0000CO0 SA_REGO9:063CDCCE SA_REG10:063CCCCF
+0000C8 SA_REG11:063D8838 SA_REG12:00016AC0O
+0000D0 SA_REG13:00022CA0 SA_REG14:863D886A
+0000D8 SA_REG15:00000000
+0000DC SAVEREG_XINIT:00000000 00000000 00000000 00000000
+0000EC CEEVGTSI:000114F8 ST_DSA_ALLOC_FLAG:00000000
+0000F4 ST_DSA_ALLOC_VAL:00000000 ALLOCSEG: 00000000
+0000FC BELOW16M_FLAG:00000000 LOCAL_ALLOC: FFFFFFOO
+00010C LOCAL_GETMAINS:00000000 LOCAL_FREEMAINS:00000000
+00015C MOREFLAGS:00000000 DS_THIS_IS:.... DSFIRST:00017350
+000168 DSLAST:00017350 DSB0S:00017350 DSINITSZ:00000000
+00017C DSINCRSZ:00000000 DSGUARDSZ:00000000
+000184 DSKEEPFREE:00000000 DSPOOL:00000000 DSPREALLOC: 00000000
+000190 DS_BYTES_ALLOC:00000000 DS_CURR_ALLOC:00000000
+000198 DS_GETMAINS:00000000 DS_FREEMAINS:00000000
+0001A0 DS_FLAGS:00000000

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 5 of 11)

Chapter 3. Using Language Environment debugging facilities

89

DSA backchain
DSA: 000253C0O
+000000 FLAGS:0000 MEMD:0000 BKC:00022CA0O FWC:000254C0
+00000C R14:864C1E3A R15:064C3F88 RO:000082A8
+000018 R1:00025454 R2:00017428 R3:0002547C
+000024 R4:00025470 R5:00022018 R6:00000000
+000030 R7:00025480 R8:00000001 R9:FFFFFFFC
+00003C R10:063CE334 R11:064C1C38 R12:00016ACO
+000048 LWS:00017630 NAB:00025460 PNAB: 00000000
+000064 RENT:00000000 CILC:00000000 MODE : 863D04CE
+000078 RMR:00000000
Contents of DSA at location 000253C0:
+00000000 00000000 00022CA0 000254CO 864C1E3A 064C3F88 000082A8 00025454 00017428
+00000020 0002547C 00025470 00022018 00000000 00025480 00000001 FFFFFFFC 063CE334
+00000040 064C1C38 00016ACO 00017630 00025460 00000000 00000000 00000000 00000000
+00000060 00000000 00000000 00OOO000 863DOACE 00000000 0AOOOO0O OO0 00000000
+00000080 000230D8 063CF18F 000230F4 0002310C 00023110 00025484 00025474 00025478
DSA: 00022CA0
+000000 FLAGS:0808 MEMD:CEE1 BKC:000221F8 FWC:000253C0
+00000C R14:863CEA4C4 R15:063D8838 RO:06319A64
+000018 R1:000230B0 R2:00023308 R3:00000003
+000024 R4:00016058 R5:00000010 R6:000230D8
+000030 R7:00023C9F R8:063CECCD R9:063CDCCE
+00003C R10:063CCCCF R11:863CBCDO R12:00016ACO
+000048 LWS:00017630 NAB:000253C0 PNAB:00000012
+000064 RENT:00022BF8 CILC:00000259 MODE : 863CD462
+000078 RMR:06484AE8
Contents of DSA at location 00022CA0:
+00000000 0808CEE1 000221F8 000253CO 863CE4C4 063D8838 06319A64 000230BO 00023308 |.......
+00000020 00000003 00016058 00000010 00O230D8 00023CIF O63CECCD ©63CDCCE 063CCCCF |.vvvwe=viveeeeQuunnnneennnnnnn,
+00000040 863CBCDO 00016ACO 00017630 000253CO 00000012 867C5882 867C5896 86448940 |f
+00000060 FFFFFFFF 00022BF8 00000259 863CD462 00017630 00022D80 06484AE8 00000000 |......
+00000080 863CCO9A 00000000 00024218 00O230BO 00015900 063186A0 00000000 00013304 |f
+000000A0 00023C9F ©63CECCD ©063CDCCE ©63CCCCF 863CBCDO 00016ACO 06319D54 06319A64 |......vvvuvuuenn.
+000000CO 863CC62C 000221F8 06319A64 00023194 00000002 063186A0 00000000 00000001 |f.F....8....... m.
+000000E0 063199D0 00023CIF 063CECCD 063CDCCE 063CCCCF 863CBCDO OOO16ACO 06319A64 |..r...eveveeeeeenfuiiiiiiie,
To display entire DSA: IP LIST 00022CA® LEN(X'00002720') ASID(X'001F"')
DSA: 000221F8
+000000 FLAGS:1000 MEMD:0000 BKC:000220E0 FWC:000222D8
+00000C R14:863026BA R15:06615024 RO:067C68F8
+000018 R1:00022290 R2:067C6CCO R3:06301BCA
+000024 RA4:068E0414 R5:067C6B38 R6:000222B2
+000030 R7:000222BC R8:000222C0 R9:80000000
+00003C R10:8669199A R11:800082A8 R12:00016ACO
+000048 LWS:00017630 NAB:000222D8 PNAB:065D28D2
+000064 RENT:00015E68 CILC:000159D0 MODE : 863022E8
+000078 RMR:00017630
Contents of DSA at location 000221F8:
+00000000 10000000 000220E0 000222D8 863026BA 06615024 067C68F8 00022290 067C6CCO |....vvw....
+00000020 06301BCA 068E0414 067C6B38 000222B2 000222BC 000222C0 80000000 8669199A |.........
+00000040 800082A8 00016ACO 00017630 000222D8 065D28D2 067C68F8 067C68F8 000159D0 |..by..
+00000060 00015E50 00015E68 000159D0 863022E8 8649AA90 00016ACO 00017630 000222C8 |..;&.
+00000080 00000000 00000004 04000000 FI7FCL4F 00000001 FI7FCI4F 067C6CCO 067C6C88 |....evvvnn..
+000000A0 00000003 067C6BA8 O68ECE56 00000000 068DFIEC 068E0414 00000000 00000000 |.....
+000000CO 00000000 00000002 O68ECEE0 00000000 00000000 00000000 067C68F8 00000000 |..uvvveviiiirrerernnnnns 6.8....

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 6 of 11)

90 z/0OS V1R5.0 Language Environment Debugging Guide

[11]Condition Management Control Blocks
User Stack Control Blocks

STKH:
+000000
+00000C

Library

STKH:
+000000
+00000C

HCOM:
+000000
+000014
+000020
+000028

CIBH:
+000000
+000010
+000018
+000024
+000028
+000038
+000040
+000054
+00005A
+00005F
+000068
+000074
+000084
+000090
+00009C
+0000A8
+0000B4

+000348
+000350
+000358
+000360
+000368
+000370
+000378
+000380
+000388
+000390
+00039B
+0003A8
+0003B8
+000418
+000428
+000438
+000448
+000450
+000458
+000460
+000468
+000470
+00047C

+0009E0
+0009E9
+0009F0
+0009F6

00022000

EYE_CATCHER:STKU NEXT:000171F4

SEGMENT_LEN:00020000
Stack Control Blocks

00021000

EYE_CATCHER:STKL NEXT:00017238

SEGMENT_LEN:00001000

063186A0
PICA_AREA:00000000 00000000

PREV:0

PREV:0

EYES:HCOM

00171F4

0017238

CAA_PTR1:00016ACO

CVTDCB:9B FLAG:60F04000 EXIT_STK:068F0028
RSM_PTR: 00000000 HDLL_STK:068ECFO8
SRP_TOKEN: 00000000 CSTK:00042028 CIBH:00023818

00023818
EYE:CIBH BACK:063199D0

PRM_PREFIX:00000000

FRWD: 00000000
PTR_CIB:00000000 FLAG1:00
HDLQ:00000000 STATE: 00000000

ERROR

PRM_DE

LOCATION_FLAGS:00
SC:00000000

PRM_LIST:00000000 00000000 00000000 00000000
PARM_DESC:00000000 PARM_PREFIX:00000000
PARM_LIST:00000000 00000000 00000000 00000000 FUN:00000000

CIB_SIZ:0000 CIB_VER:0000 FLG_5:00 FLG_6:00
FLG_7:00 FLG_8:00 FLG_1:00 FLG_2:00 FLG_3:00
FLG_4:00 ABCD: 00000000 ABRC: 00000000
OLD_COND_64:00000000 00000000 0LD_MIB:00000000
COND_64:00000000 00000000 MIB:00000000 PL:00000000
SV2:00000000 SV1:00000000 INT:00000000
MID:00000000 HDL_SF:00000000 HDL_EPT:00000000
HDL_RST:00000000 RSM_SF:00000000 RSM_POINT:00000000
RSM_MACHINE: 00000000 COND_DEFAULT: 00000000
Q_DATA_TOKEN:00000000 FDBK:00000000 ABNAME:........
Machine State

MCH_EYE:....

MCH_GPR00: 00000000 MCH_GPRO1:00000000

MCH_GPR02: 00000000 MCH_GPR03:00000000

MCH_GPRO4: 00000000 MCH_GPR05: 00000000

MCH_GPRO6: 00000000 MCH_GPRO7 : 00000000

MCH_GPR08: 00000000 MCH_GPR09: 00000000
MCH_GPR10:00000000 MCH_GPR11:00000000
MCH_GPR12:00000000 MCH_GPR13:00000000
MCH_GPR14:00000000 MCH_GPR15:00000000

MCH_PSW:00000000 60000000 MCH_ILC:0000 MCH_IC1:00
MCH_IC2:00 MCH_PFT:00000000 MCH_FLT_0:00000000 00000000

MCH_FLT_2:00000000 00000000
MCH_FLT_6:00000000 00000000
MCH_FLT_1:00000000 00000000
MCH_FLT_5:00000000 00000000
MCH_FLT_8:00000000 00000000
MCH_FLT_10:00000000 00000000
MCH_FLT_11:00000000 00000000
MCH_FLT_12:00000000 00600000
MCH_FLT_13:00000000 00000000
MCH_FLT_14:00000000 00000000
MCH_FLT_15:00000000 00600000
MCH_APF_FLAGS: 00

ABCC:00000000 HRC:00000000

MCH_FLT_4:00000000 00000000
MCH_EXT:00000000

MCH_FLT_3:00000000 00000000
MCH_FLT_7:00000000 00000000
MCH_FLT_9:00000000 00000000

MCH_FP

RSM_SF

C:00000000

_FMT:00

RSM_PH_CALLEE_FMT:00 SVI_FMT:00 RSM_PH_CALLEE:00000000
INT_FCN_EP:00000000 HDL_SF_FMT:00

SV2_FMT:00 HDL_PH_CALLEE:08000000

HDL_PH_CALLEE_FMT:00

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 7 of 11)

Chapter 3. Using Language Environment debugging facilities

91

CIBH:
+000000
+000010
+000018
+000024
+000028
+000038
+000040
+000054
+00005A
+00005F
+000068
+000074
+000084
+000090
+00009C
+0000A8
+0000B4

+000348
+000350
+000358
+000360
+000368
+000370
+000378
+000380
+000388
+000390
+00039B
+0003A8
+0003B8
+000418
+000428
+000438
+000448
+000450
+000458
+000460
+000468
+000470
+00047C

+0009E0
+0009E9
+0009F0
+0009F6

CIB:
+000000
+00000E
+000020
+000028
+000034
+00003C
+000048
+000050
+000059
+00009C
+0000AC
+0000B4
+0000C4
+0000D0
+0000DC
+0000E8
+0000F4
+000100

06319900

EYE:CIBH BACK:00000000
PTR_CIB:00023308
HDLQ: 00000000
PRM_PREFIX:00000000

FLAG1:C5
STATE:00000000

FRWD:00023818
ERROR_LOCATION_FLAGS:1F
PRM_DESC: 00000000

PRM_LIST:00023320 000233E8 000233F4 0631A11C

PARM_DESC:00000000

PARM_PREFIX:00000000
PARM_LIST:000233E4 00023308 000233F4 0631A11C

CIB_S1Z:010C CIB_VER:0004 FLG_5:48 FLG_6:23
FLG_7:00 FLG_8:00 FLG 1:00 FLG 2:00 FLG_3:00
FLG_4:05 ABCD:940C9000 ABRC:00000009

OLD_COND_64:00030C89 59C3C5C5

COND_64:00030C89 59C3C5C5
SV2:000221F8
MID:00000003
HDL_RST:00000000
RSM_MACHINE:06319F18

SV1:000221F8

HDL_SF:00017428 ~
RSM_SF:000221F8 RSM_POINT:063026D0
COND_DEFAULT: 00000003

OLD_MIB:00000001
MIB:00000001 PL:06301B38
INT:063026CE
HDL_EPT:063A9C58

Q_DATA_TOKEN:06319B08 FDBK:00000000 ABNAME:
Machine State

Machine State

MCH_EYE:ZMCH

MCH_GPR00O: 00000000 MCH_GPRO1:00022290
MCH_GPR02:067C6CCO MCH_GPR03:06301BCA
MCH_GPRO4:068E0414 MCH_GPR05:067C6B38

MCH_GPRO6: 00000000 MCH_GPRO7:00000001
MCH_GPR08:000222C0 MCH_GPR09:80000000
MCH_GPR10:8669199A MCH_GPR11:800082A8
MCH_GPR12:00016AC0 MCH_GPR13:000221F8
MCH_GPR14:863026BA MCH_GPR15:00000012
MCH_PSW:078D2400 863026D0 MCH_ILC:0002 MCH_IC1:00

MCH_IC2:09 MCH_PFT:00000000
MCH_FLT_2:00000000 00000000
MCH_FLT_6:00000000 00000000
MCH_FLT_1:00000000 00000000
MCH_FLT_5:00000000 00000000
MCH_FLT_8:00000000 00000000
MCH_FLT_10:00000000 00000000
MCH_FLT_11:00000000 00000000
MCH_FLT_12:00000000 00000000
MCH_FLT_13:00000000 00000000
MCH_FLT_14:00000000 00000000
MCH_FLT_15:00000000 00000000
MCH_APF_FLAGS:00

ABCC: 00000000
RSM_PH_CALLEE_FMT:00
INT_FCN_EP:00000000

HRC:00000000

HDL_SF_FMT:00

MCH_FLT_0:4DB3EDBF DAC99794

MCH_FLT_4:00000000 00000000
MCH_EXT:00000000

MCH_FLT_3:00000000 00000000
MCH_FLT_7:00000000 00000000
MCH_FLT_9:00000000 00000000

MCH_FPC:00000000

RSM_SF_FMT:00

SVI_FMT:00 RSM_PH_CALLEE:00000000
HDL_PH_CALLEE_FMT:00

SV2_FMT:00 HDL_PH_CALLEE:00000000

00023308
EYE:CIB BACK: 00000000
VER:0004 PLAT_ID:00015A38

MIB:00000000

FLG_1:00 FLG_2:00
HDL_EPT:063A9C58
RSM_POINT:063026D0
COND_DEFAULT: 00000003
PH_CALLEE_SF_FMT:00
VRPSA: 00080000
MFLAG:00 FLG_5:48
ABCD:940C9000
PL:06301B38
INT:063026CE
FUN:00000067
STATE: 00000000

SIGNO: 00000008

FRWD:00000000 S1Z:010C

COND_64:000300C6 59C3C5C5
MACHINE :00023414
0LD_COND_64:00036C89 59C3C5C5
FLG_3:00
HDL_RST:00000000
RSM_MACHINE:06319F18
PH_CALLEE_SF:FCFDFEFF
VSR:00000000 60000000
MCB:0631EE8Q
FLG_6:23
ABRC: 00000009
SV2:000221F8
Q_DATA_TOKEN:D3D34040
TOKE:00022018
RTCC: FFFFFFFC
AB_TERM_EXIT:000232B0 00000000
PPSD:0631A130

0LD_MIB:00000001
FLG_4:04

MRN:0000017A 068ED338
FLG_7:00 FLG_8:00

SV1:000221F8

FDBK: 00000000
MID:00000003
PPAV:00000003
SDWA_PTR:00000000

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 8 of 11)

92 2/0S V1R5.0 Language Environment Debugging Guide

FUN:00000067

HDL_SF:00022018
RSM_SF:000221F8

HDL_SF_FMT:00
VSTOR: 00000000

ABNAME : 00000000 00000000

[12]Message
CMXB:
+000000
+00000C

MDST forward chain from CMXBDHEAD(1)

MDST:
+000000
+000008

MDST:
+000000
+000008

Processing Control Blocks
00014B08

EYE:CMXB SIZE:0110
DHEAD2:00014B28

00094000

EYE:MDST SIZE:00C8
NEXT:00014B28
00014B28

EYE:MDST SIZE:00C8

NEXT:00000000

MDST back chain from CMXBDHEAD(2)

MDST:
+000000
+000008

MDST:
+000000
+000008

TMXB:
+000000

MGF:
+000000

MGF:
+000000

MGF:
+000000

00014B28

EYE:MDST SIZE:00C8
NEXT:00000000

00094000

EYE:MDST SIZE:00C8
NEXT:00014B28

0631A4E8

EYE:TMXB

068F5028

EYE:CMIB PREV:068F6550
0631A520

EYE:CMIB PREV:068F5028
068F6550

EYE:CMIB PREV:0631A520

[13]Information for enclave main

CTL:40
PREV:00000000

CTL:40

PREV:00094000

CTL:40

PREV:00094000

CTL:40
PREV:00000000

MIB_CHAIN_PTR:068F5028

NEXT: 0

NEXT: 0

NEXT: 0

[14] Information for thread 0676992000000000

[15] Traceback:
DSA Addr Program Unit PU Addr
000253C0 CEEHSDMP 063D8838
00022CA0 CEEHDSP 063CBCDO
000221F8 06301B90
000220E0 066919A6
00022018 CEEBBEXT 000082A8

[16]Control Blocks Associated with the

PU Offset
+000E9600
+000027F2
+00000B3E
+00242CFA
+068CC3F6

Thread:

FLAGS:C000 DHEAD1:00094000

CEEDUMPLOC:00
DDNAM: CEEDUMP

CEEDUMPLOC: 00
DDNAM: SYSOUT

CEEDUMPLOC: 00
DDNAM: SYSOUT

CEEDUMPLOC:00
DDNAM: CEEDUMP

631A520

68F6550

68F5028

Entry
CEEHSDMP
CEEHDSP
main
EDCZMINV
CEEBBEXT

Thread Synchronization Queue Element (SQEL): 0631A618

+000000 0631A618 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OO0 |...v.ueereiiiiiieeiiiineennnns
+000020 0631A638 00016ACO 00000000 00000000 00000000 00000000 00000000 00000000 0000000

E Addr

063D8838
063CBCDO
06301B90
066919A6
000082A8

E Offset
+000E9600
+000027F2
+00000B3E
+00242CFA
+068CC3F6

Statement Load Mod Service
CEEPLPKA
CEEPLPKA
MYMOD
CEEEV003
CEEBINIT

UQ31021

Status
Call

Call
Exception
Call

Call

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 9 of 11)

Chapter 3. Using Language Environment debugging facilities

93

[17]Enclave Control Blocks:

Mutex and Condition Variable Blocks (MCVB+MHT+CHT): 068D1018
+000000 068D1018 00008F50 068D1044 000003F8 00001FCO 00000000
+000020 068D1038 000007CO 00000000 068D4148 00000000 00000000
+000040 068D1058 00000000 00000000 00000000 00000000 00000000

068D4130
00000000
00000000

068D1444
00000000
00000000

00000000

000000F8 |...&....... Bt 8
00000000)

Thread Synchronization Enclave Latch Table (EPALT): 068D1544
+000000 068D1544 00000000 00000000 0000000 00000000 00000000
+000020 068D1564 - +00055F 068D1AA3 same as above
+000560 068D1AA4 00000000 00000000 00000000 00000000 0646A478
+000580 068D1AC4 00000000 00000000 0000000 000000 00000000
+0005A0 068D1AE4 - +00061F 068D1B63 same as above
+000620 068D1B64 00000000 00000000 00000000 00000000 00000000
+000640 068D1B84 00000000 00000000 0000000 00000000 00000000
+000660 068D1BA4 - +0009FF 068D1F43 same as above

00000000 00000000 00000000
00000000

00000000

00000000
00000000

00000000
00000000

00000000
00000000

0646A478
00000000

00000000
00000000

HEAPCHK Option Control Block
+000000 068D3028 C8C3D6D7
+000020 068D3048 00000000

HEAPCHK Element Table (HCEL)

Header: 068F3028
+000000 068F3028 C8C3C5D3

Address

Table: 068F3048
+000000 068F3048 068F2020

HEAPCHK Element Table (HCEL)

Header: 068DD028
+000000 068DDO28 C8C3C5D3

Address

Table: 068DD048
+000000 068DDO48
+000020 068DDO68
+000040 068DDO88
+000060 068DDOA8

068D5020
068D5958
068D5BEO
068D5C28

(HCOP) : 068D3028

00000024 00000001 00000000
C8C3C6E3 00000200 00000000
for Heapid 068F020C :

068DD0O28 00000000 068FO20C
Seg Addr Length

068F2000 000002A8 00000000
for Heapid 00000000 :

00000000 068F3028 00000000
Seg Addr Length

068D5000 00000110 00000000
068D5000 00000250 00000000

068D5000 00000038 00000000
068D5000 00000010 00000000

00000000
00000000

000001F4
Address

00000000

000001F4
Address

068D5130
068D5BA8
068D5C18
00000000

068F3028
00000000

068D304C
00000000

00000001 00000001
Seg Addr Length

00000000 00000000

00000007 00000007
Seg Addr Length

068D5000 00000828
068D5000 00000038
068D5000 00000010
00000000 00000000

00000000
00000000

00000000

00000000

00000000

00000000
00000000
00000000
00000000

[18] Language Environment Trace Table:

Most recent trace entry is at displacement: 004900
Most recent trace entry is at displacement: 004480

Displacement

Trace Entry in Hexadecimal

+000000 Time 20.55.18.050451 Date 2001.08.21 Thread ID... 0676992000000000

+000010 Member ID.... 03 Flags..... 000000 Entry Type..... 00000001

+000018 94818995 40404040 40404040 40404040 40404040 40404040 40404040 40404040 |main

+000038 60606E4D FOF8F55D 40979989 95A3864D 5D404040 40404040 40404040 40404040 |-->(085) printf()

+000058 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040

+000078 40404040 40404040

+000080 Time 20.55.18.068354 Date 2001.08.21 Thread ID... 0676992000000000

+000090 Member ID.... 03 Flags..... 000000 Entry Type..... 00000002

+000098 4C60604D FOF8F55D 40D9F1F5 7EFOFOFO FOFOFOFO C540C5D9 DID5D67E FOFOFOFO |<--(085) R15=0000000E ERRNO=0000
+0000B8 FOFOFOFO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [0000. . .vvvvvviiirrereininneeenn
+0000D8 00000000 00000000 00000000 00000000 00000000 0000000 OOOOO000 OO0 | ...eeeerrnnneeeernnnneeeeennnns
+0000F8 00000000 000GGGGO

+000100 Time 20.55.18.068362 Date 2001.08.21 Thread ID... 0676992000000000

+000110 Member ID.... 03 Flags..... 000000 Entry Type..... 00000003

+000118 94818995 40404040 40404040 40404040 40404040 40404040 40404040 40404040 |main

+000138 60606E4D F1F5F55D 4097A388 99858184 6D94A4A3 85A76D89 9589A34D 5D404040 |-->(155) pthread_mutex_init()
+000158 40404040 40404040 40404040 40404040 40404040 40404040 40000000 000GOGOGGOG | ..
+000178 00000000 00060000

+000180 Time 20.55.18.068388 Date 2001.08.21 Thread ID... 0676992000000000

+000190 Member ID.... 03 Flags..... 000000 Entry Type..... 00000004

+000198 4C60604D F1F5F55D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9 DID5D67E FOFOFOFO |<--(155) R15=00000000 ERRNO=0000
+0001B8 FOFOFOFO 40C5D9D9 D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000 [0000 ERRNO2=00000000............
+0001D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OO0 | ..vvureriiiiirereniineeeennnns
+0001F8 00000000 000GGGOO .

Trace Entry in EBCDIC

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 10 of 11)

94 z/0S V1R5.0 Language Environment Debugging Guide

+000200
+000210
+000218
+000238
+000258
+000278

+004400
+004410
+004418
+004438
+004458
+004478

+004480
+004490
+004498
+0044B8
+0044D8
+0044F8

Time 20.55.18.068395 Date 2001.08.21
Member ID.... 03 Flags..... 000000
94818995 40404040 40404040 40404040 40404040 40404040
60606E4D FOF8F55D 40979989 95A3864D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.55.23.736474 Date 2001.08.21
Member ID.... 03 Flags..... 000000
A3889985 81846D83 93858195 A4974040 40404040 40404040
60606E4D FOF8F55D 40979989 95A3864D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.55.23.736488 Date 2001.08.21
Member ID.... 03 Flags..... 000000
4C60604D FOF8F55D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOFOFO 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

[19]Process Control Blocks:
Thread Synchronization Process Latch Table (PPALT): 068D1F44

+000000 068D1F44 00000000 00000000 00O0NO00 000000 00000 00000000 OO0 00000000 |
+000020 068D1F64 - +0O09FF 068D2943

same as above

Exiting Language Environment Data

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

0676992000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

0676992000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

0676992000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

main
-->(085) printf()

thread_cleanup
-->(085) printf()

<--(085) R15=00000000 ERRNO=0000

Figure 14. Example of Formatted Output from LEDATA Verbexit (Part 11 of 11)

Sections of the Language Environment LEDATA verbexit

formatted output

The sections of the output listed here appear independently of the Language

Environment-conforming languages

[1] - [8] Summary

used.

These sections are included when the SUMMARY parameter is specified on the

LEDATA invocation.

[1] Summary Header

The summary header section contains:
* Address of Thread control block (TCB)

* Release number
» Address Space ID (ASID)

[2] Active Members List

This list of active members is extracted from the enclave member list (MEML).

[3] CEECAA

This section formats the contents of the Language Environment common anchor
area (CAA). Refer to|[“The Common Anchor Area” on page 64|for a description of
the fields in the CAA.

[4] CEEPCB

This section formats the contents of the Language Environment process control
block (PCB), and the process level member list.

Chapter 3. Using Language Environment debugging facilities

95

[5] CEERCB

This section formats the contents of the Language Environment region control block
(RCB).

[6] CEEEDB

This section formats the contents of the Language Environment enclave data block
(EDB), and the enclave level member list.

[7] PMCB

This section formats the contents of the Language Environment program
management control block (PMCB).

[8] Run-Time Options

This section lists the run-time options in effect at the time of the dump, and
indicates where they were set.

[9] Heap Storage Control Blocks

This section is included when the HEAP or SM parameter is specified on the
LEDATA invocation.

This section formats the Enclave-level storage management control block (ENSM)
and for each different type of heap storage:

* Heap control block (HPCB)

* Chain of heap anchor blocks (HANC). A HANC immediately precedes each
segment of heap storage.

This section includes a detailed heap segment report for each segment in the
dump. For more information about the detailed heap segment report, see
[‘Understanding the HEAP LEDATA output” on page 98,

[10] Stack Storage Control Blocks

This section is included when the STACK or SM parameter is specified on the
LEDATA invocation.

This section formats:

« Storage management control block (SMCB)

* Chain of dynamic save areas (DSA)
Refer to ['The upward-growing (non-XPLINK) stack frame section” on page 62| or
|“The downward-growing (XPLINK) stack frame section” on page 63 for a
description of the fields in the DSA.

» Chain of stack segment headers (STKH)
An STKH immediately precedes each segment of stack storage.

[11] Condition Management Control Blocks

This section is included when the CM parameter is specified on the LEDATA
invocation.

96 z/0OS V1R5.0 Language Environment Debugging Guide

This section formats the chain of Condition Information Block Headers (CIBH) and
Condition Information Blocks. The Machine State Information Block is contained

with the CIBH starting with the field labeled MCH_EYE. Refer to|‘The condition
linformation block” on page 71| for a description of fields in these control blocks.

[12] Message Processing Control Blocks

This section is included when the MH parameter is specified on the LEDATA
invocation.

[13] - [19] CEEDUMP Formatted Control Blocks

These sections are included when the CEEDUMP parameter is specified on the
LEDATA invocation.

[13] Enclave Identifier
This statement names the enclave for which information is provided.
[14] Information for thread

This section shows the system identifier for the thread. Each thread has a unique
identifier.

[15] Traceback
There will be one or more Traceback sections, depending on the setting of the

NTHREADS parameter in the VERBEXIT LEDATA invocation. For a description of
NTHREADS, see [‘Report type parameters” on page 81.|

For all active routines in a particular thread, the traceback section shows:
» Stack frame (DSA) address
* Program unit

The primary entry point of the external procedure. For COBOL programs, this is
the PROGRAM-ID name. For C, Fortran, and PL/I routines, this is the compile
unit name. For Language Environment-conforming assemblers, this is the
EPNAME = value on the CEEPPA macro.

* Program unit address
* Program unit offset

The offset of the last instruction to run in the routine. If the offset is a negative
number, zero, or a very large positive number, the routine associated with the
offset probably did not allocate a save area, or the routine could have been
called using SVC-assisted linkage. Adding the program unit address to the offset
gives you the location of the current instruction in the routine. This offset is from
the starting address of the routine.

* Entry

For COBOL, Fortran, and PL/I routines, this is the entry point name. For C/C++
routines, this is the function name. If a function name or entry point was not
specified for a particular routine, then the string ** NoName *** will appear.

* Entry point address
* Entry point offset
+ Statement number
This field contains no Language Environment data.

Chapter 3. Using Language Environment debugging facilites 97

* Load module

This field contains no Language Environment data.
+ Service level

This field contains no Language Environment data.
» Status

Routine status can be call, exception, or running.

[16] Control Blocks Associated with the Thread
This section lists the contents of the thread synchronization queue element (SQEL).
[17] Enclave Control Blocks

If the POSIX run-time option was set to ON, this section lists the contents of the
mutex and condition variable control blocks, the enclave level latch table, and the
thread synchronization trace block and trace table. If the HEAPCHK run-time option
is set to ON, this section lists the contents of the HEAPCHK options control block
(HCOP) and the HEAPCHK element tables (HCEL). A HEAPCHK element table
contains the location and length of all allocated storage elements for a heap in the
order that they were allocated.

[18] Language Environment Trace Table

If the TRACE run-time option was set to ON, this section shows the contents of the
Language Environment trace table.

[19] Process Control Blocks

If the POSIX run-time option was set to ON, this section lists the contents of the
process level latch table.

Understanding the HEAP LEDATA output

The Language Environment IPCS Verbexit LEDATA generates a detailed heap
segment report when the HEAP option is used with the DETAIL option, or when the
SM,DETAIL option is specified. The detailed heap segment report is useful when
trying to pinpoint damage because it provides very specific information. The report
describes the nature of the damage, and specifies where the actual damage
occurred. The report can also be used to diagnose storage leaks, and to identify
heap fragmentation. [Figure 15 on page 99|illustrates the output produced by
specifying the HEAP option. [‘Heap report sections of the LEDATA output” on page|
describes the information contained in the formatted output.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows. Ellipses are used to summarize some
sections of the dump.

Note: Language Environment does not provide support for alternative Vendor Heap

Manager (VHM) data. LEDATA verb exit will state that an alternative VHM is
in use.

98 z/0S V1R5.0 Language Environment Debugging Guide

IP VERBEXIT LEDATA 'HEAP'

LANGUAGE ENVIRONMENT DATA

Language Environment Productt 04 VO1 R02.00
Heap Storage Control Blocks

ENSM: 00014D30
+0000A8 ENSM_ADDL_HEAPS:259B1120

User Heap Control Blocks

HPCB: 00014D48
+000000 EYE_CATCHER:HPCB FIRST:25995000 LAST:25995000

HANC: 25995000
+000000 EYE_CATCHER:HANC NEXT:00014D48 PREV:00014D48
+00000C HEAPID:00000000 SEG_ADDR:25995000 ROOT_ADDR:259950B0
+000018 SEG_LEN:00008000 ROOT_LEN:00007F50
This is the last heap segment in the current heap.
[1]Free Storage Tree for Heap Segment 25995000
Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length
0 259950B0 00007F50 00000000 00000000 00000000 00000000 00000000
[2]Map of Heap Segment 25995000
To display entire segment: IP LIST 25995000 LEN(X'00008000') ASID(X'0021')

25995020: Allocated storage element, 1ength=00000038. To display: IP LIST 25995020 LEN(X'00000038') ASID(X'0021')
25995028: C3C4D3D3 00000000 40000000 00000000 24700F98 24703F70 25993870 00000490 |CDLL [s P Fevennn |

25995058: Allocated storage element, 1ength=00000038. To display: IP LIST 25995058 LEN(X'00000038') ASID(X'0021')
25995060: C3C4D3D3 25995028 80000000 00000000 247006F0 24700770 2471CEBO 00000150 |CDLL.r& [0 &|

25995090: Allocated storage element, 1ength=00000010. To display: IP LIST 25995090 LEN(X'00000010') ASID(X'0021')
25995098: 259ADBB8 00000000 [eiinnns |

259950A0: Allocated storage element, 1ength=00000010. To display: IP LIST 259950A0 LEN(X'00000010') ASID(X'0021')
259950A8: 259ADBEO 00000000 [oeeennn. |

259950B0: Free storage element, 1ength=00007F50. To display: IP LIST 259950B0 LEN(X'00007F50') ASID(X'0021')
Summary of analysis for Heap Segment 25995000:

Amounts of identified storage: Free:00007F50 Allocated:00000090 Total:00007FEO

Number of identified areas : Free: 1 Allocated: 4 Total: 5

00000000 bytes of storage were not accounted for.

No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

Anywhere Heap Control Blocks

HPCB: 00014D78
+000000 EYE_CATCHER:HPCB FIRST:24A91000 LAST:259C2000

HANC: 24A91000
+000000 EYE_CATCHER:HANC NEXT:25993000 PREV:00014D78
+00000C HEAPID:00014D78 SEG_ADDR:24A91000 ROOT_ADDR: 00000000
+000018 SEG_LEN:00F00028 ROOT_LEN:00000000
Free Storage Tree for Heap Segment 24A91000

The free storage tree is empty.

Figure 15. Example Formatted Detailed Heap Segment Report from LEDATA Verbexit (Part 1 of 4)

Chapter 3. Using Language Environment debugging facilities 99

Map of Heap Segment 24A91000
To display entire segment: IP LIST 24A91000 LEN(X'00FO0028') ASID(X'0021"')

24A91020: Allocated storage element, 1ength=00F00008. To display: IP LIST 24A91020 LEN(X'00F00008') ASID(X'0021')
24A91028: BO35F6D8 B2C0AO81 24ABEDSO 00000000 03000000 00000001 94818995 40404040 |..6Q...8u.eueeeereenenns main |

Summary of analysis for Heap Segment 24A91000:
Amounts of identified storage: Free:00000000 Allocated:00F00008 Total:00F00008
Number of identified areas : Free: 0 Allocated: 1 Total: 1
00000000 bytes of storage were not accounted for.
No errors were found while processing this heap segment.

HANC: 259AC000
+000000 EYE_CATCHER:HANC NEXT:259AF000 PREV:2599D000
+00000C HEAPID:00014D78 SEG_ADDR:259AC000 ROOT_ADDR:259AC020
+000018 SEG_LEN:00002000 ROOT_LEN:00000C30

Free Storage Tree for Heap Segment 259AC000
Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length
0 259AC020 00000C30 00000000 00000000 259ADC48 00000000 000003B8
1 259ADC48 000003B8 259AC020 00000000 00000000 00000000 00000000
Map of Heap Segment 259AC000
To display entire segment: IP LIST 259AC000 LEN(X'00002000') ASID(X'0021')
259AC020: Free storage element, 1ength=00000C30. To display: IP LIST 259AC020 LEN(X'00000C30') ASID(X'0021')

259ACC50: Allocated storage element, 1ength=00000728. To display: IP LIST 259ACC50 LEN(X'00000728') ASID(X'0021')
259ACC58: D3D3E340 071C0001 00000000 00000000 00000000 00000003 00000040 20010003 |LLT weuuverrnrerrnneennaeen vune

259AD378: Allocated storage element, 1ength=00000080. To display: IP LIST 259AD378 LEN(X'00000080') ASID(X'0021')
259AD380: 00000000 00000000 247006F0 247006F0 000008A8 2471CEBO 00000000 00000001 | [A V2N |

259AD3F8: Allocated storage element, 1ength=00000068. To display: IP LIST 259AD3F8 LEN(X'00000068') ASID(X'0021"')
259AD400: C5E3C3E2 00000007 00000000 25993870 A4797478 247971E0 25993870 A4797478 |ETCS [P P r..u...

259AD460: Allocated storage element, 1ength=00000728. To display: IP LIST 259AD460 LEN(X'00000728') ASID(X'0021')
259AD468: C3D3D3E3 071C0001 00000000 00000000 00000000 00000001 00000040 60010005 |CLLT....nerneeneerneennnnn. -

259ADB88: Allocated storage element, 1ength=00000028. To display: IP LIST 259ADB88 LEN(X'00000028') ASID(X'0021')
259ADB90: 180F58FF 001007FF 24700AB8 2471CEBO 2479A6E8 FFFFFFFE 247006F0 259AD380 | wY..oooo.. 0..L.

259ADBBO: Allocated storage element, 1ength=00000028. To display: IP LIST 259ADBBO LEN(X'00000028') ASID(X'0021')
259ADBB8: 00000000 25995098 70004000 00000000 00000000 000000 000000 0OOOOOOO | LT

259ADBD8: Allocated storage element, 1ength=00000028. To display: IP LIST 259ADBD8 LEN(X'00000028') ASID(X'0021')
259ADBEQ: 00000000 259950A8 70004000 00000000 00000000 00000000 00000000 00000000 |..... Py

259ADCO0: Allocated storage element, 1ength=00000048. To display: IP LIST 259ADCOO LEN(X'00000048') ASID(X'0021')
259ADCO8: C1C4C8D7 FOFOO000 259ADC14 C8D7C3C2 259AE000 259AE000 00001000 00001000 |ADHPOO...... HPCB...ovieeennt, |

259ADC48: Free storage element, 1ength=000003B8. To display: IP LIST 259ADC48 LEN(X'000003B8') ASID(X'0021')

Summary of analysis for Heap Segment 259AC000:
Amounts of identified storage: Free:00000FE8 Allocated:00000FF8 Total:00001FEQ
Number of identified areas : Free: 2 Allocated: 8 Total: 10
00000000 bytes of storage were not accounted for.
No errors were found while processing this heap segment.

Figure 15. Example Formatted Detailed Heap Segment Report from LEDATA Verbexit (Part 2 of 4)

100 z/0S V1R5.0 Language Environment Debugging Guide

Below Heap Control Blocks

HPCB:
+000000

HANC:
+000000
+00000C
+000018

00014DA8

EYE_CATCHER:HPCB FIRST:00044000

00044000

EYE_CATCHER:HANC NEXT:00014DA8
SEG_ADDR:80044000

HEAPID:00014DA8
SEG_LEN:00002000

LAST:00044000

PREV:00014DA8

ROOT_LEN:00001C78

This is the last heap segment in the current heap.

Free Storage Tree for Heap Segment 00044000

Node
Depth Address

Node
Length

Parent
Node

Left
Node

Left
Length

Right
Node

ROOT_ADDR: 00044388

Right

Length

0 00044388 00001C78 00000000 00000000 00000000 00000000 00000000

Map of Heap Segment 00044000

To display entire segment: IP LIST 00044000 LEN(X'00002000') ASID(X'0021')

00044020
00044028:

00044068:
00044070

00044190:
00044198:

00044218:
00044220

00044260
00044268:

00044388:

Allocated storage
C8C4D3E2 00000000

Allocated storage
07000700 O5EQ900F

Allocated storage
C3E2E3D2 00000000

Allocated storage
C8C4D3E2 00044028

Allocated storage
07000700 O5EQ900F

element,
00044220

element,
EOA641DE

element,
00000000

element,
00000000

element,
EOA641DE

1ength=00000048. To display:

00000040 00010000 00000001

1ength=00000128. To display:

002258C0 E11258F0 E1160BOF

1ength=00000088. To display:

00800001 00000001 00000068

1ength=00000048. To display:

00000040 00010000 00000002

1ength=00000128. To display:

002258C0 E11258F0 E1160BOF

IP LIST
000241E0

IP LIST
E2C6E7D4

IP LIST
04000000

IP LIST
000241E0

IP LIST
E2C6E7D4

00044020

00044068

LEN(X'00000048") ASID(X'0021')
24701038 |

01200001

00044190

00000000 |

00044218
259ADB90

00044260

LEN(X'00000048') ASID(X'0021')
|HDLS

LEN(X'00000128') ASID(X'0021')
01200001

..... L N 2.

Free storage element, 1ength=00001C78. To display: IP LIST 00044388 LEN(X'00001C78') ASID(X'0021')

Summary of analysis for Heap Segment 00044000:

Amounts of identified storage:
Number of identified areas

1 Allocated:

00000000 bytes of storage were not accounted for.
No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

Additional Heap Control Blocks

5 Total:

Free:00001C78 Allocated:00000368 Total:00001FE0
Free:

6

ADHP: 25981120
+000000 EYE_CATCHER:ADHP NEXT:259B24A8 HEAPID:2598112C
HPCB: 259B112C
+000000 EYE_CATCHER:hpcb FIRST:259B112C LAST:259B112C
ADHP: 259B24A8
+000000 EYE_CATCHER:ADHP NEXT:259ADCO8 HEAPID:259B24B4
HPCB: 259B24B4
+000000 EYE_CATCHER:hpchb FIRST:259B24B4 LAST:259B24B4
ADHP: 259ADCO8
+000000 EYE_CATCHER:ADHP NEXT:FOF00000 HEAPID:259ADC14
HPCB: 259ADC14
+000000 EYE_CATCHER:HPCB FIRST:259AEQ00 LAST:259AE000
HANC: 259AE000
+000000 EYE_CATCHER:HANC NEXT:259ADC14 PREV:259ADC14
+00000C HEAPID:259ADC14 SEG_ADDR:259AE000 ROOT_ADDR:259AE1E8
+000018 SEG_LEN:00001000 ROOT_LEN:00000E18
Figure 15. Example Formatted Detailed Heap Segment Report from LEDATA Verbexit (Part 3 of 4)

Chapter 3. Using Language Environment debugging facilities

101

This is the last heap segment in the current heap.
Free Storage Tree for Heap Segment 259AE000
Node Node Parent Left Right Left Right
Depth Address Length Node Node Node Length Length
0 259AE1E8 00000E18 00000000 00000000 00000000 00000000 00000000
Map of Heap Segment 259AE000
To display entire segment: IP LIST 259AE000 LEN(X'00001000') ASID(X'0021')

259AE020: Allocated storage element, 1ength=000001C8. To display: IP LIST 259AE020 LEN(X'000001C8') ASID(X'0021')
259AE028: D7C3C9C2 00000000 00000000 00O101BC 00000000 00000000 00000000 00000000 |PCIB....'eeunreerneenneennnnns

259AE1E8: Free storage element, 1ength=00000E18. To display: IP LIST 259AE1E8 LEN(X'00000E18') ASID(X'0021')

Summary of analysis for Heap Segment 259AE000:
Amounts of identified storage: Free:00000E18 Allocated:000001C8 Total:00000FEQ
Number of identified areas : Free: 1 Allocated: 1 Total: 2
00000000 bytes of storage were not accounted for.
No errors were found while processing this heap segment.
This is the last heap segment in the current heap.

Exiting Language Environment Data

Figure 15. Example Formatted Detailed Heap Segment Report from LEDATA Verbexit (Part 4 of 4)

Heap report sections of the LEDATA output

The Heap Report sections of the LEDATA output provide information for each heap
segment in the dump. The detailed heap segment reports include information on the
free storage tree in the heap segments, the allocated storage elements, and the
cause of heap management data structure problems.

[1]Free Storage Tree Report

Within each heap segment, Language Environment keeps track of unallocated
storage areas by chaining them together into a tree. Each free area represents a
node in the tree. Each node contains a header, which points to its left and right
child nodes. The header also contains the length of each child.

The LEDATA HEAP option formats the free storage tree within each heap, and
validates all node addresses and lengths within each node. Each node address is
validated to ensure that it:

» Falls on a doubleword boundary

» Falls within the current heap segment

* Does not point to itself

* Does not point to a node that was previously traversed

Each node length is validated to ensure that it:

e Is a multiple of 8

* Is not larger than the heap segment length

» Does not cause the end of the node to fall outside of the current heap segment
* Does not cause the node to overlap another node

If the formatter finds a problem, then it will place an error message describing the
problem directly after the formatted line of the node that failed validation

[2]Heap Segment Map Report

The LEDATA HEAP option produces a report that lists all of the storage areas within
each heap segment, and identifies the area as either allocated or freed. For each

102 z/0S V1R5.0 Language Environment Debugging Guide

allocated area the contents of the first X’20’ bytes of the area are displayed in order
to help identify the reason for the storage allocation.

Each allocated storage element has an 8 byte prefix used by Language

Environment to manage the area. The first fullword contains a pointer to the start of

the heap segment. The second fullword contains the length of the allocated storage

element. The formatter validates this header to ensure that its heap segment

pointer is valid. The length is also validated to ensure that it:

* Is a multiple of 8

* Is not zero

* Is not larger than the heap segment length

» Does not cause the end of the element to fall outside of the current heap
segment

* Does not cause the element to overlap a free storage node

If the heap_free_value of the STORAGE run-time option was specified, then the
formatter also checks that the free storage within each free storage element is set
to the requested heap_free_value. If a problem is found, then an error message
describing the problem is placed after the formatted line of the storage element that
failed validation.

Diagnosing heap damage problems

Heap storage errors can occur when an application allocates a heap storage
element that is too small for it to use, and therefore, accidently overlays heap
storage. If this situation occurs then some of the typical error messages generated
are:

* The node address does not represent a valid node within the heap segment

* The length of the segment is not valid, or

* The heap segment pointer is not valid.

If one of the above error messages is generated by one of the reports, then
examine the storage element that immediately precedes the damaged node to
determine if this storage element is owned by the application program. Check the
size of the storage element and ensure that it is sufficient for the program’s use. If
the size of the storage element is not sufficient then adjust the allocation size.

If an error occurs indicating that the node’s pointers form a circular loop within the
free storage tree, then check the Free Storage Tree Report to see if such a loop
exists. If a loop exists, then contact the IBM support center for assistance because
this may be a problem in the Language Environment heap management routines.

Additional diagnostic information regarding heap damage can be obtained by using
the HEAPCHK run-time option. This option provides a more accurate time
perspective on when the heap damage actually occurred, which could help to
determine the program that caused the damage. For more information on
HEAPCHK, see|z/0S Language Environment Programming Referencel

Diagnosing storage leak problems

A storage leak occurs when a program does not return storage back to the heap
after it has finished using it. To determine if this problem exists, do one of the
following:

* The call-level suboption of the HEAPCHK run-time option causes a report to be
produced in the CEEDUMP. Any still-allocated (that is, not freed) storage
identified by HEAPCHK is listed in the report, along with the corresponding
traceback. This shows any storage that wasn'’t freed, as well as all the calls that

Chapter 3. Using Language Environment debugging facilities 103

were involved in allocating the storage. For more information about the
HEAPCHK run-time option, see|z/OS Language Environment Programming|

[Referencd .

* Examine the Heap Segment Map report to see if any data areas, within the
allocated storage elements, appear more frequently than expected. If they do,
then check to see if these data areas are still being used by the application
program. If the data areas are not being used, then change the program to free
the storage element after it is done with it.

Diagnosing heap fragmentation problems

Heap fragmentation occurs when allocated storage is interlaced with many free
storage areas that are too small for the application to use. Heap fragmentation
could indicate that the application is not making efficient use of its heap storage.
Check the Heap Segment Map report for frequent free storage elements that are
interspersed with the allocated storage elements.

Understanding the C/C++-specific LEDATA output

104

The Language Environment IPCS Verbexit LEDATA generates formatted output of
C/C++-specific control blocks from a system dump when the ALL parameter is
specified and C/C++ is active in the dump. [Figure 16 on page 105|illustrates the
C/C++-specific output produced. The system dump being formatted was obtained
by specifying the TERMTHDACT(UADUMP) run-time option when running the
program CELSAMP [Figure 5 on page 46| [‘C/C++-specific sections of the LEDATA
foutput” on page 109|describes the information contained in the formatted output.
Ellipses are used to summarize some sections of the dump.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

z/OS V1R5.0 Language Environment Debugging Guide

EE R

00015920

[1]CGEN:
+00007C
+0001F8
+000208
+000214
+000220
+00022C
+000238

[2] CGENE:
+000000
+0000D0
+000104
+00010C
+000124
+000500
+000510
+000520
+000530
+000544
+0006D4

[3]1CEDB:
+000000
+000010
+000018
+000028
+000034
+000040
+000048
+000050
+000058
+000064
+000070
+000080
+000090
+0000A0
+0000B4
+0000C0O
+0000CC
+0000D8
+0000EC

"""""""" B e e e e e e R

CRTL ENVIRONMENT DATA

0S_SPCTYPE:00000000 CGENE:2471AD74 CRENT:25993870
CFLTINIT:4E000000 00000000 CPRMS:000149D0 TRACE:000000FF

CTHD:24719964 CURR_FECB:2471ABD4 CEDCXV:A489EBO4
CGEN_CPCB:24719004 CGEN_CEDB:2471A5A4 CFLG3:00
CI0:247191AC FDSETFD:00000000 FCB_MUTEXOK:0000

T_C16:00000000 T_C17:00000000 CEDCOV:2489A69C
CTOFSV:00000000 TRTSPACE:24719D74

2471AD74

CGENEYE:.... CGENESIZE:00000000 CGENEPTR:00000000
CERRNO:00000000 TEMPLONG:00000000 AMRC:00000000
STDINFILE:00000000 STDOUTFILE:00000000

STDERRFILE: 00000000 CTYPE:00000000 LC_CTYPE:00010001
LC_CHARMAP:00000001
MIN_FLT:00F200F3 00F400F5 OOF600F7 OOF8OOF9

MAX_FLT:00F300AD OOEOOOE8 OOE9001F 25993860
FLT_EPS:00000000 DBL_EPS:00000000 00000000
LDBL_EPS:00000000 00000000 C7C5D5C5 000006E0
IMSPCBLIST:000163BC ADDRTBL:24719C7C
ABND_CODE: 00000000 RSN_CODE:00000000

2471A5A4
EYE:CEDB SIZE:000004D0 PTR:2471A5A4 CLLST:24704B40
CEELANG:0003 CASWITCH:0000 CLWA:2471B2DC
CALTLWA:2471B62C CCADDR:24702178 CFLGS:00000080
CANCHOR:00000000 RPLLEN:00000000 ACBLEN:00000000
LC:2471AA7C VALID_HIGH:2483D6EO _LOW:2483BD3C
HEAD_FECB:00000000 ATEXIT_COUNT:00000000
_EMPTY_COUNT:00000000 MAINPRMS:25993D08
STDINFILE:2471A3A8 STDOUTFILE:24719FB8
STDERRFILE:2471A1B0 CTYPE:2484029A TZDFLT:00004650
CINFO:2471AB8C CMS_WRITE_DISK:4040 _DISK_SET:00000000

MIN_FLT:00100000 00000000 00000000 00000000

MAX_FLT:7FFFFFFF FFFFFFFF 71FFFFFF FFFFFFFF

FLT_EPS:3C100000 DBL_EPS:34100000 00000000
LDBL_EPS:26100000 00000000 18000000 00000000 FLAGS1:02000000
MTF_MAINTASK_BLK:00000000 EMSG_SETTING:00 DEPTH:00000000
SCREEN_WIDTH:00000000 USERID:IBMUSER.

HEAP24_ANCHOR: 00000000 TCIC:00000000 TKCLI:00000000
ATEXIT_FUNCS01:00000000 00000000 00000000 00000000 00000000
ATEXIT_FUNCS02:00000000 00000000 00000000 00000000 00000000

Figure 16. Example Formatted C/C++ Output from LEDATA Verbexit (Part 1 of 5)

Chapter 3. Using Language Environment debugging facilities

105

+000330
+000344
+000358
+000360
+000368
+000374
+000380
+00038C
+000398
+0003A4
+0003C4
+0003D0
+0003E0
+0003E8
+0003F8
+000408
+000410
+00041C
+000424
+000430
+000444
+000454
+00045C
+000468
+000474
+000480
+000488
+000494
+0004A0
+0004AC
+0004BC

[4]CTHD:
+000000
+00000C
+000014
+00002E
+000034
+00003C
+000044
+000050
+00005C
+000064
+000070
+00007C
+000084
+000090
+000098
+0000A4
+0000B0O
+0000BC
+0000C8
+0000D0
+0000DC
+0000E4
+0000EC
+0000F4
+0000FC

ATEXIT_FUNCS31:00000000 00000000 00000000 00000000 00000000

ATEXIT_FUNCS32:00000000 00000000 00000000 60000000 00000000
HEAD_FOREIGN_FECB:00000000 SNAP_DUMP_COUNT:00000000
ENVIRON: 00000000 GETENV_BUF:00000000
_BUF_LEN:00000000 INSPECT GLOBALS:00000000
“JMP_BUFF:00025C44 _BACK_END:00000000 _FLAGS:00000000
TTAB:00000000 INTOFFLIST:00000000 CGEN_CRENT:25993870
"CPRMS:000149D0 _CEDCXV:A489EBO4 _CEDCOV :2489A69C
“EPCBLIST:00000000 CAA_ADDR:00015920
USERIDLENGTH:00000007 ~ MAXUNGETCOUNT : 0004
T0GET_ANY:2493BFBO _BELOW:2493B6D0 IOFREE_ANY:2493C470
_BELOW:2493BC10 MTFMAINTASKBLK:00000000
SIGTABLE:2471ADB4 INIT_STDIN:2471A3A8
_STDOUT:24719FB8 _STDERR:2471A1B0 TABNUM: 00000008
FLAGS2:00000000 OPENMVS_FLAGS:00 MRPSTDR:2482D7F8
MWPSTDR: 2482DA00 MRPSTDC : 2482928
MWPSTDC : 2482CB30 OWRP1:24898BA4 OWRP3:2489EBO4
STATIC_EDCOV:00000000 GETENV_BUF2:00000000
_BUF2_LEN:00000000 DLCB_MUTEX:25993DA8 _CONDV:25993DAC
EDCOV:2498B480 LCX:2471ACB4 MUTEX_ATTR:25993D48
STOR_INIT:00003000 _INCR:00002000 DEMANGLE:00000000
TEMPR15: 00000000 TERMINATE: 00000000
CXX_INV:00000000 D4_JOIN_MUTEX_ATTR:25993D98
_MUTEX:25993D9C _CONDV_ATTR:25993DA@ _CONDV:25993DA4
DLLANCHOR: 00000000 DLLLAST:00000000 MEM24P:000163C0
RTLMUTEX_ARRAYPTR:25993D4C MSGCATLIST:00000000
SRCHP:00000000 ETOAP:00000000 ATOEP:00000000
NDMGMTP : 00000000 POPENP:00000000 RND48P:00000000
BRK_HEAPID:00000000 _START:00000000 _CURRENT:00000000
_END:00000000 RESTARTTABLE:2497BE48 SYSLOGP:00000000
LOGIN_NAME:......... PREV_UMASK_VAL: 00000000

24719964
CTHDEYE: CTHD SIZE:00000310 CTHDPTR:24719964
STORPTR: 00000000 TOKPTR: 24837440
ASCTIME RESULT:.vvveeennneeeennnenennns
SNAP_DUMP_FLAG:00 GMTIME_BKDN:24719D4C
TIMECALLED:00000000 DATECALLED:00000000
DTCALLED: 00000000 LOC_CALLED:00000000
DOFMTO_DISCARDS : 00000000 CERRNO:00000000 AMRC:24719854
AMRC2:2471993C GDATE:00000000 OPTARGV:00000000
OPTERRV:00000001 OPTINDV:00000001
OPTOPTV:00000000 OPTSIND:00000000 DLGHTV: 00000000
TZONEV:00000000 GTDTERRV:00000000 OPTARGP: 259938A8
OPTERRP:259938A4 OPTINDP:259938A0
OPTOPTP:2599389C DLGHTP:25993890 TZONEP:25993894
GTDTERRP: 25993880 RNDSTGP: 00000000
LOCNAME : 00000000 ENCRYPTP:00000000 CRYPTP:00000000
RND48P:00000000 L64AP:00000000 WCSTOKP:00000000
CUSERP:00000000 GPASSP:00000000 UTMPXP:00000000
NDMGMTP : 00000000 RECOMP:00000000 STACKPTR:00000000
STACKSIZE: 00000000 STACKFLAGS:00 000000
MCVTP:00000000 H_ERRNO:00000000 SD:FFFFFFFF
HOSTENT_DATA_P:00000000 HOSTENT_P:00000000
NETENT DATA_P:00000000 NETENT_P:00000000
PROTOENT_DATA_P:00000000 PROTOENT_P:00000000
SERVENT_DATA_P:00000000 SERVENT_P:00000000
NTOA BUF:...”veeeeennnne... __L0C1V:00000000

Figure 16. Example Formatted C/C++ Output from LEDATA Verbexit (Part 2 of 5)

106 z/0S V1R5.0 Language Environment Debugging Guide

+000118 HERRNOP:259938AC _ LOC1P:2599388C REXECP:00000000
+000124 CXXEXCEPTION:00000000 TEMPDCBE:24719644

+00012C T_ERRNOV:00000000 T_ERRNOP:25993870

+000148 THD_STORAGE:00000000 CONTEXT_LINK:00000000 FLAGS1:00000000
+000154 LABEL_VAR:24719E74 ABND_CODE: 00000000

+00015C RSN_CODE:00000000 STRFTIME_ERADTCALLED: 00000000

+000164 STRFTIME_ERADATECALLED:00000000
+000168 STRFTIME_ERATIMECALLED:00000000
+00016C STRFTIME_ERAYEARCALLED:00000000 MBRLEN_STATE:0000

+000172 MBRTOWC_STATE:0000 WCRTOMB_STATE:0000

+000176 MBSRTOWCS_STATE:0000 WCSRTOMBS_STATE: 0000 MBLEN_STATE:0000
+00017C MBTOWC_STATE:0000 CURR_HEAP_ID:00000000

+000184 CURR_CAA:00000000 CURR_MOD_HANDLE:00000000

+00018C CURR_BMR:00000000 CU_LIST:00000000 CURR_STATUS:00
+000198 RAND_NEXT:00000001 STRERRORBUF:247193BC

+0001A0 TMPAREA:00000000 IOWORKAREA:2471971C

+0001A8 TEMPDCB:00050088 TEMPJFCB:000500E8

+0001BO TEMPDSCB:2471967C NAMEBUF : 259A0BC8

+0001B8 ERRNO_JR:00000000 RET_STRUCT:00000000

+0001CO BKDN_IS_LOCALTIME:00000000 SWPRINTF_SIZE:00008000

+0001C8 SWPRINTF_BUF:00000000 S99P:24719624 MUTEXCTARRAY :24719EAC
+0001D4 STRFTIME_ERANAMECALLED:00000000 FCB_MUTEX:00000000

+000204 HSPABHWA:24719364 MUTEX_SAVE:24719EFC

+000210 INITIAL_CPU_TIME:4D000000 00053ADF FCB_MUTEX_OK:00000001
+00021C FCB_MUTEX_SAVE:00000000 ENTRY_ADDRTABLESIZE:00000000
+000224 ADDRESS:00000000 NUMBEROFNAMES : 00000000

+00022C NAMESI:.....oiiiiiiiiiiiininnnn,

+000245 NAMESZ:...iiiiiiiiiiiiiinennnn,

+00025E NAMES3:.....oiiiiiiiiiiiiiiennnn

+000277 NAMESA:....iiviiiiiiiiiiiiinnnn,

+000290 NAMESS:...oiiviiiiiiii i,

+0002A9 NAMESH:.....coviiiiiiiiiiinennn,

+0002C4 ENTRY_SITETABLESIZE:00000000 KIND:00

+0002CC NUM_ADDRS: 00000000

+0002D0 ADDRESSES:00000000 00000000 00000000 00000000 00000000 00000000
+0002E8 NAME:00000000 00000000 00000000 00000000 00000000 00000000

[5]CPCB: 24719004

+000000 CPCB_EYE:CPCB CPCB_SIZE:00000038 CPCB_PTR:00000000
+00000C FLAGS1:40000000 TTKNHDR:00000000 TTKN:00000000
+000018 FOOTPRINT:2471A5A4 CODE370:00000000 CI0:247191AC
+000024 _Reuse:00000000 _RSAbove:24719004 _RSAbovelen:00003028
+000030 _RSBelow:000163B8 _RSBelowlen:00000328

[6]CIO: 247191AC
+000000 EYE:CIO SIZE:00000088 PTR:00000000 FLG1:08
+00000D FLG2:00 FLG3:00 FLG4:00 DUMMYF:24719234
+000014 EDCZ24:A49BFAEO FCBSTART:259A0408 DUMMYFCB:2471924C
+000020 MFCBSTART:259A05F0 IOANYLIST:2599F000
+000028 IOBELOWLIST:00050000 FCBDDLIST:24719FCC
+000030 PERRORBUF:24719074 TMPCOUNTER: 00000000
+000038 TEMPMEM:00000000 PROMPTBUF : 00000000 1024:0005602D0
+000044 IOEXITS:00050F4C TERMINALCHAIN:00000000
+00004C VANCHOR:00000000 XTI1:00000000 ENOWP24:249BFFDO
+000058 MAXNUMDESCRPS:00000000 DESCARRAY :00000000
+000060 PROC_RES_P:00000000 TEMPFILENUM:00000000 CSS:00000000
+00006C DUMMY_NAME:........ HOSTNAME_CACHE : 060000000

+000078 HOSTADDR_CACHE : 00000000

Figure 16. Example Formatted C/C++ Output from LEDATA Verbexit (Part 3 of 5)

Chapter 3. Using Language Environment debugging facilites 107

[71File name: memory.data
FCB: 259A0408

+000000 BUFPTR:259A07E5 COUNTIN:00000000 COUNTOUT:000003DB
+00000C READFUNC:259A04D8 WRITEFUNC:259A04F8 FLAGS1:0000
+000016 DEPTH:0000 NAME:259A05A4 _LENGTH:0000000B

+000020 _BUFSIZE:00000044 MEMBER:........ NEXT:2599F200
+000030 PREV:00000000 PARENT:259A0408 CHILD:00000000

+00003C DDNAME:........ FD:FFFFFFFF DEVTYPE:08 FCBTYPE:0055
+00004C FSCE:259A051C UNGETBUF:259A051C REPOS:24825EA0
+000058 GETP0S:24828418 CLOSE:24828678 FLUSH:24828AEQ

+000064 UTILITY:2480D430 USERBUF:00000000 LRECL:00000400
+000070 BLKSIZE:00000400 REALBUFPTR:00000000

+000078 UNGETCOUNT:00000000 BUFSIZE:00000400 BUF:259A07C0
+000084 CURSOR:259A07CO ENDOFDATA:00000000 SAVEDBUF:00000000
+000090 REALCOUNTIN:00000000 REALCOUNTOUT : 00000000

+000098 POSMAJOR:00000000 SAVEMAJOR: 00000000

+0000A0 POSMINOR:00000000 SAVEMINOR: 00000000 STATE:0000
+0000AA SAVESTATE:0000 EXITFTELL:00000000 EXITUNGETC:24815DB0
+0000B4 DBCSTART:00000000 UTILITYAREA:00000000

+0000BC INTERCEPT:00000000 FLAGS2:43020008 40001000

+0000C8 DBCSSTATE:0000 FCB_CPCB:24719004
+0000D0 READGLUE:58FF0008 07FF0000 READ:248158B8

+0000DC RADDR_WSA:00000000 _GETFN:00000000 RDLL_INDEX:00000000
+0000E8 RCEESGO03:00000000 RWSA:00000000

+0000FO WRITEGLUE:58FF0008 07FFO000 WRITE:248245D8

+0000FC WADDR_WSA:00000000 _GETFN:00000000 WDLL_INDEX:00000000
+000108 WCEESGO03:00000000 WWSA:00000000

FSCE: 259A051C
+000000 GENERIC1:D4C5D4D6 259A05F0 259A0664
+00000C GENERIC2:00010000 00000000 248158B8
+000018 GENERIC3:248245D8 24825EAQ 24828AE0

File name: DD:SYSPRINT

FCB: 24719FCC

+000000 BUFPTR:2599FOBD COUNTIN:00000000 COUNTOUT: 00000084
+00000C READFUNC:2471A09C WRITEFUNC:2471A0BC FLAGS1:8000
+000016 DEPTH:0000 NAME:2471A168 _LENGTH:0000000B

+000020 _BUFSIZE:00000044 MEMBER:........ NEXT:2471A1C4
+000030 PREV:2471A3BC PARENT:24719FCC ~ CHILD:00000000

+00003C DDNAME:SYSPRINT FD:FFFFFFFF DEVTYPE:02 FCBTYPE:0043
+00004C FSCE:2471A0EO UNGETBUF:2471A0EO REP0S:249C00D0O
+000058 GETP0S:249C01FO CLOSE:24A23150 FLUSH:24A23048

+000064 UTILITY:24A239A8 USERBUF:00000000 LRECL:00000089
+000070 BLKSIZE:00000372 REALBUFPTR: 00000000

+000078 UNGETCOUNT:00000000 BUFSIZE:0000008A BUF:2599F0B8
+000084 CURSOR:2599FOBC ~ ENDOFDATA:00000000 SAVEDBUF:00000000
+000090 REALCOUNTIN:00000000 REALCOUNTOUT: 00000000

+000098 POSMAJOR:00000000 SAVEMAJOR: 00000000

+0000A0 POSMINOR:00000000 SAVEMINOR: 00000000 STATE:0002
+0000AA SAVESTATE:0000 EXITFTELL:249C02A8 EXITUNGETC:249C0360
+0000B4 DBCSTART:00000000 UTILITYAREA:00000000

+0000BC INTERCEPT:00000000 FLAGS2:43128020 2A188000

+0000C8 DBCSSTATE:0000 FCB_CPCB:24719004
+0000D0 READGLUE:58FF0008 07FF0000 READ:249BFE68
+0000DC RADDR_WSA:00000000 _GETFN:00000000 RDLL_INDEX:00000000

Figure 16. Example Formatted C/C++ Output from LEDATA Verbexit (Part 4 of 5)

108 z/0S V1R5.0 Language Environment Debugging Guide

+0000E8
+0000F0
+0000FC
+000108

This is

OSNS:
+000000
+00000C
+000018
+000024
+00002C

0SIO0:
+000000
+00000C
+000018
+000020
+00002C
+000038
+000044
+000050

DCB:
+000000
+00000F
+000020
+00002E
+00004D

DCBE:
+000000
+000008
+000011
+000028

JFCB:
+000000
+00002C
+000046
+000058
+000064
+000075

RCEESGO03:00000000 RWSA: 00000000

WRITEGLUE:58FF0008 07FFO000 WRITE:24A21A68

WADDR_WSA: 00000000 _GETFN:00000000 WDLL_INDEX:00000000
WCEESGO03:00000000 WWSA:00000000

the Tast heap segment in the current heap.
2471A0EO
OSNS_EYE:0SNS
REPOS :249C00D0O
FLUSH:24A23048
EXITUNGETC:249C0360
NEWLINEPTR:2599F141

READ:249BFE68
GETP0S:249C01F0
UTILITY:24A239A8
0SIOBLK:2599F020
RECLENGTH: 00000085

WRITE:24A21A68
CLOSE:24A23150
EXITFTELL:249C02A8

FLAGS : 84800000

2599F020
0SI0_EYE:0SI0
JFCB:00050F68
READMAX : 00000001
LASTBLKNUM: FFFFFFFF

DCBW:00050020
CURRMBUF: 00051020
CURBLKNUM: FFFFFFFF

BLKSPERTRK:00000000

FIRSTPOS:00000000 LASTPOS:00000000 NEWP0OS:00000002
READFUNCNUM: 00000005 WRITEFUNCNUM:24719FCC FCB:2599F020
PARENT:80000000 FLAGS1:00000000 DCBERU:2599F078
DCBEW:80000040

DCBRU:00000000
MBUFCOUNT:00000001

00050020
DCBRELAD:2599F078
DCBBUFNO:00
DCBEXLSA:860504
DCBMACRZ2:55
DCBLRECL:9A2C

DCBFDAD:00000000 00000019
DCBSRG1:05 DCBEODAD:00005E DCBRECFM:AO
DCBDDNAM:;....... DCBMACR1:9C

DCBSYNAD:000000 DCBBLKSI:0504 DCBNCP: 00

2599F078
DCBEID:DCBE
DCBEDCB:00050020
DCBEFLG2:88
DCBEEODA: 00000000

DCBELEN:0038 RESERVEDO:0000
DCBERELA:00000000 DCBEFLG1:CO

DCBENSTR:0000 DCBESIZE:00000000
DCBESYNA:00000000 MULTSDN: 00

00050F68

JFCBDSNM: IBMUSER.PAHBAT.JOB00018.D0000101.7

JFCBELNM: JFCBTSDM: 20 JFCBDSCB: 000000
JFCBVLSQ:0000 JFCBIND1:00 JFCBIND2:81
JFCBUFNO: 00 JFCDSRG1:00 JFCDSRG2:00
JFCRECFM: 00 JFCBLKSI:0000 JFCLRECL:0000
JFCBNVOL: 00 JFCFLGS1:00

JFCNCP:00

Dummy FCB encountered at Tocation 2471924C

Exiting CRTL Environment Data

Figure 16. Example Formatted C/C++ Output from LEDATA Verbexit (Part 5 of 5)

C/C++-specific sections of the LEDATA output
For the LEDATA output:

[1] CGEN

This section formats the C/C++-specific portion of the Language Environment
common anchor area (CAA).

[2] CGENE

Chapter 3. Using Language Environment debugging facilities

109

This section formats the extension to the C/C++-specific portion of the Language
Environment common anchor area (CAA).

[3] CEDB

This section formats the C/C++-specific portion of the Language Environment
enclave data block (EDB).

[4] CTHD
This section formats the C/C++ thread-level control block (CTHD).
[5] CPCB

This section formats the C/C++-specific portion of the Language Environment
process control block (PCB).

[6] CIO
This section formats the C/C++ 10 control block (CIO).
[7] File Control Blocks

This section formats the C/C++ file control block (FCB). The FCB and its related
control blocks represent the information needed by each open stream.
Related Control Blocks

FSCE The file specific category extension control block. The FSCE represents the
specific type of IO being performed. The following is a list of FSCEs that
may be formatted.

OSNS — OS no seek

OSFS — OS fixed text

OSVF — OS variable text

OSUT — OS undefined format text

Other FSCEs will be displayed using a generic overlay.
OSIO The OS IO interface control block.

DCB The data control block. For more information about the DCB, refer to
I[DFSMS Macro Instructions for Data Sets.

DCBE The data control block extension. For more information about the DCBE,
refer to [z/0S DFSMS Macro Instructions for Data Setd.

JFCB The job file control block (JFCB). For more information about the JFCB,
refer to [z/0S MVS Data Areas, Vol 3 (IVT-RCWK)

Understanding the COBOL-specific LEDATA output

The Language Environment IPCS Verbexit LEDATA generates formatted output of
COBOL-specific control blocks from a system dump when the ALL parameter is
specified and COBOL is active in the dump. [Figure 17 on page 112]illustrates the
COBOL-specific output produced. The system dump being formatted was obtained

110 z/0S V1R5.0 Language Environment Debugging Guide

by specifying the TERMTHDACT(UADUMP) run-time option. [COBOL-specific|
isections of the LEDATA Output” on page 114|describes the information contained in
the formatted output.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

Chapter 3. Using Language Environment debugging facilities 111

ook ok e ok ok ek ok Kok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok K ok ok ok Kk ek kK Kk kK Kk kK Kk kK Kk kK Kk Kk k kK FhrE

COBOL ENVIRONMENT DATA

R R R S R

[1]RUNCOM:
+000000
+000010
+000024
+00002C
+000040
+00004C
+00007C
+000088
+000090
+0000A4
+00011C
+00012C
+000138
+000154
+00016C
+0001C8
+000204
+000240

[2] THDCOM:
+000000
+000018
+000028
+000034
+00004C
+000084
+000098
+0000AC
+0000C8
+000180
+00019C
+0001A4
+0001AC
+0001D0

[3]COBCOM:
+000000
+000058
+000060
+000064
+000078
+00009C
+0000A4

[4] CLLE:
+000000
+00000C
+000018

00049038
IDENT:C3RUNCOM LENGTH:000002D8 FLAGS:00860000
RU_ID:000178B0 INVK_RSA:00005F80

MAIN_PGM_ADDR:00007DES8 MAIN_PGM CLLE:00049328

ITBNAB: 00000000 PARM_ADDR:000179D0 NEXT_RUNCOM: 00000000
THDCOM:0001AA80 COBVEC:0001A1BC SUBCOM:©00000000
COBVEC2:0001A7FC CAA: 00018920 UPST_SWITCHES:00000000
DUM_CLLE:0BF15BA8 1ST_FREE_CLLE: 00000000

HAT:0BF157A8 1ST_CLLE:00049488

SORT_CONTROL_DCB: 00000000 COBOL_ACTIVE:00000000
10_FLAGS:00000000 UNSTR_WRK: 00000000

INSP_WRK: 00000000 INSP_WRK1: 00000000

DDNAME_SORT CONTROL:........ LEN_UNSTR_WRK: 00000000

UNSTR_DELIMS:0000

CEEINT_PLIST:000491B0 00000008 00000006 000491B4 00000000 00000000
——————————— >:00000005 00000000 00000000 0000000 OOOOOOOO
MAIN_ID:CALLSUBX

______ >

0001AA80

IDENT:C3THDCOM LENGTH:000001E8 FLAGS:81000000 00000100
COBCOM:0001A108 COBVEC:0001A1BC ~ 1ST_RUNCOM:00049038
1ST_PROGRAM: CALLSUBX SUBCOM: 00000000

CEEINT_PLIST:00000000 00000000 00000000 00000000 00000000 00000000
----------- >:00000000 00000000 00000000 000000 0OOOO0OO

COBVEC2:0001A7FC ITBLK:00000000 STT_BST:00000000
CICS_EIB:00000000 SIBLING: 00000000

SORT_RETURN:00000000 INFO_MSG_LIMIT:0000

R12_SAVE:00000000 STP_DUM_TGT:00000000
LRR_COBCOM:00000000 CAA:00018920 DUM_THDCOM: 00000000
ITBLK_TRAP_RSA:00000000 ITBLK_PLFPARMS : 00000000
ITBLK_BS2PARMS : 00000000 ITBLK_NAB: 00000000

DUM_MAIN_DSA:00000000 BDY_RSA:00000000
RRE_TAIL_RSA:00000000 ESTUB_TGT:00000000

0001A108
IDENT:C3COBCOM LENGTH:00000978 VERSION:010900
FLAGS:906000 ESM_ID:0 COBVEC:0001A1BC

COBVEC2:0001A7FC

LOADFG:00000100 00000000 80000000 00008000 00000000
THDCOM:0001AA80 INSH:00000000 LRR_THDCOM: 00000000
LRR_ITBLK: 00000000 LRR_SUBCOM: 00000000
LRR_EPLF:00000000

00049488

PGMNAME : PARM5 OPEN_NON_EXT_FILES:0000 TGT_FLAGS:00
LANG_LST:00050F98 INFO_FLAGS:8891 LOAD_ADDR:8004FF88
TGT_ADDR: 00050248 LE_TOKEN:0BF150BC FLAGSZ2:00

Figure 17. Example Formatted COBOL Output from LEDATA Verbexit (Part 1 of 2)

112 2/0S V1R5.0 Language Environment Debugging Guide

[5] TGT:
+000048
+00005C
+000070
+00008C
+0000AC
+0000C4
+0000DC
+000100
+000118

CLLE:
+000000
+00000C
+000018

TGT:
+000048
+00005C
+000070
+00008C
+0000AC
+0000C4
+0000DC
+000100
+000118

CLLE:
+000000
+00000C
+000018

TGT:
+000048
+00005C
+000070
+00008C
+0000AC
+0000C4
+0000DC
+000100
+000118

CLLE:
+000000
+00000C
+000018

TGT:
+000048
+00005C
+000070
+00008C
+0000AC
+0000C4
+0000DC
+000100
+000118

00050248

IDENT:3TGT LVL:05 FLAGS:40020220 RUNCOM: 00049038
COBVEC:0001A7FC #FCBS:00000000 WS_LEN:00000000
SMG_WRK:00000000 CAA:00018920 LEN:00000154
EXT_FCBS:00000000 OUTDD:SYSOUT

CALC_RSA:00000000 00000000 00000000 00000000 00000000 00000000
——————— >:00000000 00000000 00000000 00000000 00000000 00000000

------- >:00000000 ABINF:000500A5 TESTINF:00000000
PGMADDR:0004FF88 1STFCB:00000000 WS_ADDR:00000000
1STEXTFCB:00000000

00049440

PGMNAME : PARM1 OPEN_NON_EXT_FILES:0000 TGT_FLAGS: 00
LANG_LST:0004EF98 INFO_FLAGS:8891 LOAD_ADDR:8004DFEO
TGT_ADDR:0004E258 LE_TOKEN:0BF150A0 FLAGS2:00
0004E258

IDENT:3TGT LVL:05 FLAGS:40020220 RUNCOM: 00049038
COBVEC:0001A7FC #FCBS:00000000 WS_LEN:00000000
SMG_WRK:00000000 CAA:00018920 LEN:00000144
EXT_FCBS:00000000 OUTDD:SYSOUT

CALC_RSA:00000000 00000000 00000000 00000000 00000000 00000000
——————— >:00000000 00000000 00000000 00000000 00000000 00000000

------- >:00000000 ABINF:0004EQFD TESTINF:00000000
PGMADDR: 0004DFEO 1STFCB:00000000 WS_ADDR:00000000
1STEXTFCB:00000000

00049370

PGMNAME : PARMO OPEN_NON_EXT_FILES:0000 TGT_FLAGS: 00
LANG_LST:0004CF98 INFO_FLAGS:8891 LOAD_ADDR:8004BFF8
TGT_ADDR:0004C260 LE_TOKEN:0BF15084 FLAGSZ2:00
0004C260

IDENT:3TGT LVL:05 FLAGS:40020220 RUNCOM: 00049038
COBVEC:0001A7FC #FCBS:00000000 WS_LEN:00000000
SMG_WRK:00000000 CAA:00018920 LEN:00000140
EXT_FCBS:00000000 OUTDD:SYSOUT

CALC_RSA:00000000 00000000 00000000 00000000 00000000 6OOOOOOO
------- >:00000000 00000000 00000000 00000000 00000000 00000000

------- >:00000000 ABINF:0004C115 TESTINF:00000000
PGMADDR:0004BFF8 1STFCB:00000000 WS_ADDR:00000000
1STEXTFCB:00000000

00049328

PGMNAME : CALLSUBX OPEN_NON_EXT_FILES:0000 TGT_FLAGS:00
LANG_LST:00000000 INFO_FLAGS:9881 LOAD_ADDR:80007DE8
TGT_ADDR:00008220 LE_TOKEN:00000000 FLAGSZ2:00
00008220

IDENT:3TGT LVL:05 FLAGS:60020220 RUNCOM: 00049038
COBVEC:0001A7FC #FCBS:00000000 WS_LEN:0000002C
SMG_WRK:00000000 CAA:00018920 LEN:00000150
EXT_FCBS:00000000 OUTDD:SYSOUT

CALC_RSA:00000000 00000000 00000000 00000000 00000000 00000000
------- >:00000000 00000000 00000000 00000000 00000000 00000000
——————— >:00000000 ABINF:00007F34 TESTINF:00000000
PGMADDR:00007DE8 1STFCB:00000000 WS_ADDR:000083C0O
1STEXTFCB:00000000

Exiting COBOL Environment Data

Figure 17. Example Formatted COBOL Output from LEDATA Verbexit (Part 2 of 2)

Chapter 3. Using Language Environment debugging facilities

113

COBOL-specific sections of the LEDATA Output
For the LEDATA output:

[1] RUNCOM

This section formats the COBOL enclave-level control block (RUNCOM).
[2] THDCOM

This section formats the COBOL process-level control block (THDCOM).
[3] cOBCOM

This section formats the COBOL region-level control block (COBCOM).
[4] CLLE

This section formats the COBOL loaded program control blocks (CLLE).
[5] TGT

This section formats the COBOL TGT control blocks.

Formatting individual control blocks

In addition to the full LEDATA output which contains many formatted control blocks,
the IPCS Control block formatter can also format individual Language Environment
control blocks.

The IPCS cbf command can be invoked from the "IPCS Subcommand Entry”
screen, option 6 of the "IPCS PRIMARY OPTION MENU".

Syntax

»»—CBF—address—STRUCTure— (—cbname—) ><

address
The address of the control block in the dump. This is determined by browsing
the dump or running the LEDATA verb exit.

cbname
The name of the control block to be formatted. The control blocks that can be
individually formatted are listed in|TabIe 8 on page 11Sl In general, the name of
each control block is similar to that used by the LEDATA verb exit and is
generally found in the control block’s eyecatcher field. However, all control block
names are prefixed with CEE in order to uniquely define the Language
Environment control block names to IPCS.

For an example of the display which is the result of the command, see [Figure 18 o

bage 115

CBF 15890 struct(CEECAA)

114 2/0S V1R5.0 Language Environment Debugging Guide

CEECAA: 00015890

+000000 FLAGO:00 LANGP:08 B0S:00023000 E0S:00043000
+000044 TORC:00000000 TOVF:8000B5A0 ATTN:06412AF8

+00015C HLLEXIT:00000000 HOOK:50C0D064 05C058CO COO605CC
+0001A4 DIMA:0000D176 ALLOC:0700C198 STATE:0700C198

+0001BO ENTRY:0700C198 EXIT:0700C198 MEXIT:0700C198

+0001BC LABEL:0700C198 BCALL:0700C198 ACALL:0700C198

+0001C8 D0:0700C198 IFTRUE:0700C198 IFFALSE:0700C198

+0001D4 WHEN:0700C198 OTHER:0700C198 CG0T0:0700C198

+0001F4 CRENT:00000000 EDCV:864D9170 TCASRV_USERWORD: 00000000
+00025C TCASRV_WORKAREA:06412448 TCASRV_GETMAIN:00000000

+000264 TCASRV_FREEMAIN:00000000 TCASRV_LOAD:8000E738

+00026C TCASRV_DELETE:8000E428 TCASRV_EXCEPTION: 00000000
+000274 TCASRV_ATTENTION:00000000 TCASRV_MESSAGE:00000000

+000280 LWS:000174B0 SAVR:00000000 SYSTM:03 HRDWR:03
+0002AE SBSYS:02 FLAGZ:00 LEVEL:08 PM: 04 GETLS:00011CA0
+0002B8 CELV:00018038 GETS:00011BBO LB0S:00021000

+0002C4 LEOS:00023000 LNAB:00022E98 DMC:00000000

+0002D0 ABCODE:00000000 RSNCODE:00000000 ERR:00021480

+0002DC GETSX:00011930 DDSA:00016128 SECTSIZ:00000000

+0002E8 PARTSUM:00000000 SSEXPNT:00000000 EDB:000148B0
+0002F4 PCB:00014558 EYEPTR:00015878 PTR:00015890

+000300 GETS1:00012730 SHAB: 00000000 PRGCK:00000004 FLAG1:00
+000310 URC:00000000 ESS:00042F00 LESS:00022F00

+00031C OGETS:000120F8 OGETLS:00000000 PICICB:00000000

+000328 GETSX:00000000 GOSMR:0000 LEOV:00000000

+000334 SIGSCTR:00000000 SIGSFLG:00000000

+00033C THDID:80000000 00000000 DCRENT:00000000

+000348 DANCHOR:00000000 CTOC:00000000 RCB:00013918

+000354 CICSRSN:00000000 MEMBR:000161C8

+00035C SIGNAL_STATUS:00000000 FOR1:00000000 FOR2:00000000
+000378 THREADHEAPID:00000000 SIGNGPTR:00015C24 SIGNG:00000001
+000398 FORDBG:00000000 AB_STATUS:00 AB_GRO:00000000

+0003A4 AB_ICD1:00000000 AB_ABCC:00000000 AB_CRC:00000000
+0003D4 SMCB:00015F70 ERRCM:06412ABO MIB_PTR:00000000

+000434 THDSTATUS:00000000 TICB_PTR:06413840

+00047C FWD_CHAIN:00015890 BKWD_CHAIN:00015890

Figure 18. The CAA Formatted By The CBFORMAT IPCS Command

For more information on using the IPCS CBF command refer to the "CBFORMAT

subcommand” section

in[zZ0S MVS IPCS Commands, SA22-7594.

Table 8. Language Environment Control Blocks Which Can Be Individually Formatted

Control Block Description

CEEADHP Additional Heap Control Block
CEECAA Common Anchor Area

CEECIB Condition Information Block
CEECIBH Condition Information Block Header
CEECMXB Message Services Block

CEEDSA Dynamic Storage Area

CEEDSATR XPLINK Transition Area

CEEDSAX Dynamic Storage Area (XPLINK style)
CEEEDB Enclave Data Block

CEEENSM Enclave Level Storage Management
CEEHANC Heap Anchor Node

115

Chapter 3. Using Language Environment debugging facilities

Table 8. Language Environment Control Blocks Which Can Be Individually
Formatted (continued)

Control Block Description

CEEHCOM CEL Exception Manager Communications Area
CEEHPCB Thread Level Heap Control Block

CEEHPSB Heap Statistics Block

CEEMDST Message Destination

CEEMGF Mapping of the Message Formatter (IBM1MGF)
CEEPCB Process Control Block

CEEPMCB Program Management Control Block

CEERCB Region Control Block

CEESKSB Stack Statistics Block

CEESMCB Storage Management Control Block
CEESTKH Stack Header Block

CEESTKHX Stack Header Block (xplink style)

CEESTSB Storage Report Statistics Block

CEETMXB Thread Level Messages Extension Block

Requesting a Language Environment trace for debugging

Language Environment provides an in-storage, wrapping trace facility that can

reconstruct the events leading to the point where a dump is taken. The trace facility

can record two types of events: entry and exit library calls and, if the POSIX

run-time option is set to ON, user mutex and condition variable activity such as init,

lock/unlock, and wait. Language Environment produces a trace table in its dump

report under the following conditions:

* The CEE3DMP callable service is invoked with the BLOCKS option and the
TRACE run-time option is set to ON.

* The TRACE run-time option is set to NODUMP and the TERMTHDACT run-time
option is set to DUMP, UADUMP, TRACE, or UATRACE.

* The TRACE run-time option is set to DUMP (the default).

For more information about the CEE3DMP callable service, the TERMTHDACT
run-time option, or the TRACE run-time option, see |zZ0S Language Environment
|Programming Referencel

The TRACE run-time option activates Language Environment run-time library
tracing and controls the size of the trace buffer, the type of trace events to record,
and it determines whether a dump containing only the trace table should be
unconditionally taken when the application (enclave) terminates. The trace table
contents can be written out either upon demand or at the termination of an enclave.

The contents of the Language Environment dump depend on the values set in the

TERMTHDACT run-time option. Under abnormal termination, the following dump

contents are generated:

« TERMTHDACT(QUIET) generates a Language Environment dump containing the
trace table only

« TERMTHDACT(MSG) generates a Language Environment dump containing the
trace table only

116 z/0S V1R5.0 Language Environment Debugging Guide

« TERMTHDACT(TRACE) generates a Language Environment dump containing
the trace table and the traceback

« TERMTHDACT(DUMP) generates a Language Environment dump containing
thread/enclave/process storage and control blocks (the trace table is included as
an enclave control block)

« TERMTHDACT(UAONLY) generates a system dump of the user address space

« TERMTHDACT(UATRACE) generates a Language Environment dump that
contains traceback information, and a system dump of the user address space

« TERMTHDACT(UADUMP) generates a Language Environment dump containing
thread/enclave/process storage and control blocks (the trace table is included as
an enclave control block), and a user address space dump

« TERMTHDACT(UAIMM) generates a system dump of the user address space of

the original abend or program interrupt that occurred prior to the Language
Environment condition manager processing the condition.

Note: Under CICS, UAIMM yields UAONLY behavior. Under non-CICS,
TRAP(ON,NOSPIE) must be in effect. When TRAP(ON,SPIE) is in effect,
UAIMM yields UAONLY behavior. For software raised conditions or signals,
UAIMM behaves the same as UAONLY.

Under normal termination, the following dump contents are generated:

* Independent of the TERMTHDACT setting, Language Environment generates a
dump containing the trace table only based on the TRACE run-time option

Language Environment quiesces all threads that are currently running except for the
thread that issued the call to CEE3DMP. When you call CEE3DMP in a multithread
environment, only the current thread is dumped. Enclave- and process-related
storage could have changed from the time the dump request was issued.

Locating the trace dump

If your application calls CEE3DMP, the Language Environment dump is written to
the file specified in the FNAME parameter of CEE3DMP (the default is CEEDUMP).

If your application is running under TSO or batch, and a CEEDUMP DD is not
specified, Language Environment writes the CEEDUMP to the batch log
(SYSOUT=" by default). You can change the SYSOUT class by specifying a
CEEDUMP DD, or by setting the environment variable,
_CEE_DMPTARG=SYSOUT(x), where x is the preferred SYSOUT class.

If your application is running under z/OS UNIX and is either running in an address
space you issued a fork() to, or if it is invoked by one of the exec family of
functions, the dump is written to the hierarchical file system (HFS). Language
Environment writes the CEEDUMP to one of the following directories in the
specified order:

1. The directory found in environment variable _ CEE_DMPTARG, if found

2. The current working directory, if the directory is not the root directory (/), and the
directory is writable

3. The directory found in environment variable TMPDIR (an environment variable
that indicates the location of a temporary directory if it is not /tmp)

4. The tmp directory

The name of this file changes with each dump and uses the following format:
/path/Fname.Date.Time.Pid

Chapter 3. Using Language Environment debugging facilites 117

path The path determined from the above algorithm.

Fname
The name specified in the FNAME parameter on the call to CEE3DMP
(default is CEEDUMP).

Date The date the dump is taken, appearing in the format YYYYMMDD (such as
19980918 for September 18, 1998).

Time The time the dump is taken, appearing in the format HHMMSS (such as
175501 for 05:55:01 p.m.).

Pid The process ID the application is running in when the dump is taken.

Using the Language Environment trace table format in a dump report

The Language Environment trace table is established unconditionally at enclave
initialization time if the TRACE run-time option is set to ON. All threads in the
enclave share the trace table; there is no thread-specific table, nor can the table be
dynamically extended or enlarged.

Understanding the trace table entry (TTE)

Each trace table entry is a fixed-length record consisting of a fixed-format portion
(containing such items as the timestamp, thread ID, and member ID) and a
member-specific portion. The member-specific portion has a fixed length, of which
some (or all) can be unused. For information about how participating products use
the trace table entry, refer to the product-specific documentation. The format of the
trace table entry is as follows:

Time of Thread Member Member Mbr-specific info up to
Day ID ID and entry a maximum of 104 bytes
flags type
Char (8) Char (8) Char (4) Char (4) Char (104)

Figure 19. Format of the Trace Table Entry

Following is a definition of each field:
Time The 64-bit value obtained from a store clock (STCK).

Thread ID
The 8-byte thread ID of the thread that is adding the trace table entry.

Member ID and Flags
Contains 2 fields:

Member ID
The 1-byte member ID of the member making the trace table entry,
as follows:
ID Name
01 CEL
03 C/C++
05 COBOL
07 Fortran
08 DCE
10 PL/I

12 Sockets

118 2/0S V1R5.0 Language Environment Debugging Guide

Flags 24 flags reserved for internal use.

Member Entry Type
A number that indicates the type of the member-specific trace information
that follows the field.

To uniquely identify the information contained in a specific TTE, you must
consider Member ID as well as Member Entry Type.

Member-Specific Information
Based on the member ID and the member entry type, this field contains the
specific information for the entry, up to 104 bytes.

For C/C++, the entry type of 1 is a record that records an invocation of a
base C run-time library function. The entry consists of the name of the
invoking function and the name of the invoked function. Entry type 2 is a
record that records the return from the base library function. It contains the
returned value and the value of errno.

Member-specific information in the trace table entry

Global tracing is activated by using the LE=n suboption of the TRACE run-time
option. This requests all Language Environment members to generate trace records
in the trace table.

The settings for the global trace events are:

Level Description

0 No global trace

1 Trace all run-rime library (RTL) function entry and exits

2 Trace all RTL mutex init/destroy and lock/unlock

3 Trace all RTL function entry and exits, and all mutex init/destroy and
lock/unlock

8 Trace all RTL storage allocation/deallocation

When LE=1 is specified: The following C/C++ records may be generated.

Table 9. LE=1 Entry Records
Member ID Record Type Description

03 00000001 Base C Library function Entry

03 00000002 Base C Library function Exit

03 00000003 Posix C Library function Entry

03 00000004 Posix C Library function Exit

03 00000005 XPLINK Base or Posix C Library function Entry
03 00000006 XPLINK Base or Posix C Library function Exit

For a detailed description of these records, see ['C/C++ Contents of the Language|
[Environment Trace Tables” on page 167

When LE=2 is specified: The following Language Environment records may be
generated.

Table 10. LE=2 Entry Records

Member Record
ID Type Class Event Description

01 00000101 LT A Latch Acquire

Chapter 3. Using Language Environment debugging facilites 119

Table 10. LE=2 Entry Records (continued)

Member Record

ID Type Class Event Description

01 00000102 LT R Latch Release

01 00000103 LT W Latch Wait

01 00000104 LT AW Latch Acquire after Wait

01 00000106 LT I Latch Increment (Recursive)
01 00000107 LT D Latch Decrement (Recursive)
01 000002FC LE EO Latch already owned (not acquired)
01 000002FD LE EUO Latch unowned (not released)
01 00000301 MX A Mutex acquire

01 00000302 MX R Mutex release

01 00000303 MX W Mutex wait

01 00000304 MX AW Mutex acquire after wait

01 00000305 MX B Mutex busy (Trylock failed)
01 00000306 MX I Mutex increment (recursive)
01 00000307 MX D Mutex decrement (recursive)
01 00000315 MX IN Mutex initialize

01 00000316 MX DS Mutex destroy

01 0000031D MX Bl Shared memory lock init

01 0000031E MX Bl Shared memory lock destroy
01 0000031F MX BO shared memory lock obtain
01 00000320 MX BC Shared memory lock obtain on condition
01 00000321 MX BR Shared memory lock release

01 000004DE ME EDL Shared memory lock returns deadlock

01 000004DF ME EIV ~ Shared memory lock returns invalid

01 000004E0 ME EPM shared memory lock returns eperm

01 000004E1 ME EAG Shared memory lock returns eagain

01 000004E2 ME EBU Shared memory lock returns ebusy

01 000004E3 ME ENM Shared memory lock returns enomem

01 000004E4 ME ENM Shared memory lock release error

01 000004E5 ME EBC Shared memory lock obtain condition error

01 000004E6 ME EBO Shared memory lock obtain error

01 000004E7 ME EBD Shared memory lock destroy error

01 000004E8 ME EBI Shared memory lock initialize error

01 000004E9 ME EFR Mutex forced release

01 000004EA ME EFD Mutex forced decrement

01 000004EB ME EDD Mutex destroy failed (damage)

01 000004EC ME EDB Mutex destroy failed (busy)

01 000004ED ME EIA Mutex initialize failed (attribute)

01 000004EE ME EIS Mutex initialize failed (storage)

01 000004EF ME EF Mutex release (forced by quiesce)

120 z/0S V1R5.0 Language Environment Debugging Guide

Table 10. LE=2 Entry Records (continued)

Member Record
ID Type Class Event Description
01 000004F0 ME EP Mutex program check
01 000004FA ME EDU Mutex destroy failed (uninitialized)
01 000004FB ME EUl Mutex uninitialized
01 000004FC ME EUO Mutex unowned (not released)
01 000004FD E EO Mutex already owned (not acquired)
01 000004FE ME EIN Mutex initialization failed (duplicate)
01 00000508 cv MR CV release mutex
01 00000509 cv MA CV reacquire mutex
01 0000050A Ccv MW CV mutex wait
01 0000050B cv MAW CV reacquire mutex after wait
01 0000050C cv CW CV condition wait
01 0000050D cv CTW CV condition timeout
01 0000050E cv CWP CV wait posted
01 0000050F cv CWI CV wait interrupted
01 00000510 cv CTO CV wait timeout
01 00000511 cv CSS CV condition signal success
01 00000512 Ccv CSM CV condition signal miss
01 00000513 Ccv CBS CV condition broadcast success
01 00000514 cv CBM CV condition broadcast miss
01 00000515 cv IN CV initialize
01 00000516 cv DS CV destroy
01 000006EB CE EDD CV destroy failed (damage)
01 000006EC CE EDB CV destroy failed (busy)
01 000006ED CE EIA CV initialization failed (attribute)
01 000006EE CE EIS CV initialization failed (storage)
01 000006EF CE EF CV forced by quiesce
01 000006F0 CE EP CV program check
01 000006F1 CE EBT CV invalid system TOD
01 000006F2 CE EBN CV invalid timespec (nanoseconds)
01 000006F3 CE EBS CV invalid timespec (seconds)
01 000006F4 CE EPO CV condition post callable service fail
01 000006F5 CE ETW CV condition timed wait callable service fail
01 000006F6 CE EWA CV condition wait callable service fail
01 000006F7 CE ESE CV condition setup callable service fail
01 000006F8 CE ERM CV recursive mutex
01 000006F9 CE EWM CV wrong mutex
01 000006FA CE EDU CV destroy failed (uninitialized)
01 000006FB CE EUl CV mutex or CV uninitialized
01 000006FC CE EUO CV mutex unowned

Chapter 3. Using Language Environment debugging facilities

121

122

Table 10. LE=2 Entry Records (continued)

Member Record
ID Type Class Event Description

01 000006FE CE EIN CV initialization failed (duplicate)

The format for the Mutex — Condition Variable — Latch entries in the trace table is:

Table 11. Format of the Mutex/CV/Latch Records

Class Source | | Event | | Object Addr Name1 Name2

unused

Where each field represents:

Class Two character EBCDIC representation of the trace class.

LT Latch
LE Latch Exception
MX Mutex

ME Mutex Exception
cv Condition Variable
CE Condition Variable Exception

Source
One character EBCDIC representation of the event.
(o3 C/C++
D DCE
S Sockets

Blank Blank character

Event Two character EBCDIC representation of the event. See[Table 10 on page]
fiid

Object address
Fullword address of the mutex object.

Name 1
Optional eight character field containing the name of the function or object
to be recorded.

Name 2
Optional eight character field containing the name of the function or object
to be recorded.

When LE=3 is specified: The trace table will include the records generated by
both LE=1 and LE=2.

When LE=8 is specified: The trace table will contain only storage allocation
records. Currently this is only supported by C/C++.

Table 12. LE=8 Entry Records

Member ID Record Type Description

03 00000001 Storage allocation entry

z/OS V1R5.0 Language Environment Debugging Guide

Table 12. LE=8 Entry Records (continued)
Member ID Record Type Description
03 00000001 Storage allocation exit

For a detailed description of these records, see [‘C/C++ Contents of the Language]
[Environment Trace Tables” on page 167.|

Sample dump for the trace table entry

The following is an example of a dump of the trace table when you specify the
LE=1 suboption (the library call/return trace):

Chapter 3. Using Language Environment debugging facilities 123

'Enc1ave Control Blocks:
EDB: 0001E920

+000000 0001E920 C3C5C5C5 C4C24040 C5000001 00020E68 0001FO40 00000000 00000000 00000000

MEML: 00020E68

+000000 00020E68 00000000 00000000 0007C5B8 00000000 00000 00000000 0007C588 00000000

Language Environment Trace Table:
Most recent trace entry is at displacement: 001B80

Displacement

Trace Entry in Hexadecimal

+000000
+000010
+000018
+000038
+000058
+000078

+000080
+000090
+000098
+0000B8
+0000D8
+0000F8

+000100
+000110
+000118
+000138
+000158
+000178
+000180
+000190
+000198
+0001B8
+0001D8
+0001F8

+000200
+000210
+000218
+000238
+000258
+000278

+000280
+000290
+000298
+0002B8
+0002D8
+0002F8

+000300
+000310
+000318
+000338
+000358
+000378

+000380
+000390
+000398
+0003B8
+0003D8
+0003F8

Time 21.41.57.595359 Date 2001.08.26
Member ID.... 03 Flags..... 000000
6D6DA289 9589A3F6 F46D6D83 82836D83 938296A2 F2F46D89
60606E4D F1F9F35D 406D6D87 85A38382 4D5D4040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 21.41.57.595367 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F9F35D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOFOFO 00000000 00000000 00000000 00000000 0OOOOO0O
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Time 21.41.57.595374 Date 2001.08.26
Member ID.... 03 Flags..... 000000
6D6DA289 9589A3F6 F46D6D83 82836D83 938296A2 F2F46D89
60606E4D F1F1F35D 406D6D89 A2D796A2 89A7D695 4D5D4040
40404040 40404040 40404040 40404040 40404040 40404040
00000000 00000000

Time 21.41.57.595380 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F1F35D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOFOFO 40C5D9D9 D5D6F27E FOFOFOFO FOFOFOFO 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Time 21.41.57.595638 Date 2001.08.26
Member ID.... 03 Flags..... 000000
D3968392 A27A7AC9 95A2A381 9583854D 5D404040 40404040
60606E4D F1F2F45D 40948193 9396834D F1F6FOFO 5D404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 21.41.57.595690 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F2F45D 40D9F1F5 7EF2F4AC2 F6CAF8C5 F840C5D9
FOFOFOFO 00000000 00000000 00000000 00000000 0OOOOO0O
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Time 21.41.57.595743 Date 2001.08.26
Member ID.... 03 Flags..... 000000
8785A394 9684856D 86999694 6D86844D 8995A35D 40404040
60606E4D F1F9F35D 406D6D87 85A38382 4D5D4040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 21.41.57.595746 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F9F35D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOFOFO 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00OO0000 OOOEOO00 000000 00000
00000000 00000000

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

8000000000000000
. 00000001
96A2A399 8581946D
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000003
96A2A399 8581946D
40404040 40404040
40000000 00000000

8000000000000000
. 00000004
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

|CEEEDB E......... 0

Lo, Eereeneennns Eevvn

Trace Entry in EBCDIC

__sinit64__cbc_clbos24_iostream_
-->(193) _ getch()

<--(193) R15=00000000 ERRNO=0000

__sinit64__cbc_clbos24_iostream_
-->(113) __isPosixOn()

<--(113) R15=00000000 ERRNO=0000
0000 ERRN02=00000000............

Locks::Instance()
-->(124) malloc(1600)

<--(124) R15=24B6DSE8 ERRNO=0000

getmode_from_fd(int)
-->(193) _ getch()

Figure 20. Trace Table in Dump Output

124

z/OS V1R5.0 Language Environment Debugging Guide

Part 2. Debugging Language-Specific Routines

This part provides specific information for debugging applications written in C/C++,
COBOL, Fortran, and PL/I. It also discusses techniques for debugging under CICS.

© Copyright IBM Corp. 1991, 2004 125

126 2z/0S V1R5.0 Language Environment Debugging Guide

Chapter 4. Debugging C/C++ Routines

This chapter provides specific information to help you debug applications that
contain one or more C/C++ routines. It also provides information about debugging
C/C++applications compiled with XPLINK. It includes the following topics:

» Debugging C/C++ I/O routines

* Using C/C++ compiler listings

» Generating a Language Environment dump of a C/C++ routine

* Generating a Language Environment dump of a C/C++ routine with XPLINK

* Finding C/C++ information in a Language Environment dump

» Debugging example of C/C++ routines

» Debugging example of C/C++ routines with XPLINK

There are several debugging features that are unique to C/C++ routines. Before
examining the C/C++ techniques to find errors, you might want to consider the
following areas of potential problems:

 If you suspect that you are using uninitialized storage, you may want to use the
STORAGE run-time option.

 If you are using the fetch() function, refer to |z/OS C/C++ Programming Guide| to
ensure that you are creating the fetchable module correctly.

« If you are using DLLs, refer to [z/0S C/C++ Programming Guidd to ensure that
you are using the DLL correctly.

» For non-System Programming C routines, ensure that the entry point of the load
module is CEESTART.

* You should avoid:
— Incorrect casting
— Referencing an array element with a subscript outside the declared bounds
— Copying a string to a target with a shorter length than the source string

— Declaring but not initializing a pointer variable, or using a pointer to allocated
storage that has already been freed

If a routine exception occurred and you need more information than the condition
handler provided, run your routine with the following run-time options, TRAP(ON,
NOSPIE) and TERMTHDACT(UAIMM). Setting these run-time options generates
a system dump of the user address space of the original abend or program
interrupt prior to the Language Environment condition manager processing the
condition. After the system dump is taken by the operating system the Language
Environment condition manager continues processing.

Debugging C/C++ Input/Output Programs

You can use C/C++ conventions such as __amrc and perror() when you debug 1/O
operations.

Using the __amrc and __amrc2 Structures

© Copyright IBM Corp.

__amrc, a structure defined in stdio.h, can help you determine the cause of errors
resulting from an 1/O operation, because it contains diagnostic information (for
example, the return code from a failed VSAM operation).

There are two structures:

__amrc (defined by type __amrc_type
__amrc2 (defined by type __amrc2_type)

1991, 2004 127

The __amrc2_type structure contains secondary information that C can provide.

Because any I/O function calls, such as printf(), can change the value of __amrc
or __amrc2, make sure you save the contents into temporary structures of
__amrc_type and __amrc2_type respectively, before dumping them.

Figure 21|shows the structure as it appears in stdio.h.

typedef struct __amrctype {

[1] union {

[2] Tong int __error;
struct {
unsigned short _ syscode,
_rcs
[3] } __abend;
struct {
unsigned char __ fdbk_fill,
_rc,
__ftncd,
__fdbk;
[4] } __ feedback;
struct {

unsigned short _ svc99 info,
__svc99_error;
[5] } __allocs
[1] } __code;
[6] unsigned long _ RBA;

[71 unsigned int __last_op;
struct {
unsigned Tong _ Ten fill; /* _len + 4 */
unsigned long _ Ten;
char __str[120];

unsigned long __ parmr0;
unsigned long _ parmrl;
unsigned long _ fil12[2];
char _str2[64];
[8] } __msg;
} __amrc_type;

Figure 21. __amrc Structure

Figure 22|shows the _ amrc2 structure as it appears in stdio.h.

struct {
[9] Tong int __error2;
[10] FILE * _ fileptr;
[11] Tong int _ reserved{6};

}

Figure 22. __amrc2 Structure

128 2z/0S V1R5.0 Language Environment Debugging Guide

[1] union { ... } _ code
The error or warning value from an 1/O operation is in __error, abend,
__feedback, or __alloc . Look at _Tast op to determine how to interpret
the _ code union.

[2] _error
A structure that contains error codes for certain macros or services your
application uses. Look at __Tast_op to determine the error codes.
__syscode is the system abend code.

[3] __abend
A structure that contains the abend code when errno is set to indicate a
recoverable I/O abend. rc is the return code. For more information on
abend codes, see [zZ0S MVS System Codes|

[4] __feedback
A structure that is used for VSAM only. The _ rc stores the VSAM register
15, _ fdbk stores the VSAM error code or reason code, and __RBA stores
the RBA after some operations.

[5] _alloc
A structure that contains errors during fopen or freopen calls when defining
files to the system using SVC 99.

[6] __RBA
The RBA value returned by VSAM after an ESDS or KSDS record is written
out. For an RRDS, it is the calculated value from the record number. It can
be used in subsequent calls to flocate.

[7] _last_op
A field containing a value that indicates the last I/0O operation being
performed by C/C++ at the time the error occurred. These values are
shown in [Table 13 on page 130}

[8] _msg
May contain the system error messages from read or write operations
emitted from the DFSMS/MVS® SYNADAF macro instruction. Because the
message can start with a hexadecimal address followed by a short integer,
it is advisable to start printing at MSG+6 or greater so the message can be
printed as a string. Because the message is not null-terminated, a
maximum of 114 characters should be printed. This can be accomplished
by specifying a printf format specifier as %.114s.

[9] _error2
A secondary error code. For example, an unsuccessful rename or remove
operation places its reason code here.

[10] __fileptr
A pointer to the file that caused a SIGIOERR to be raised. Use an fldata()
call to get the actual name of the file.

[11] __reserved
Reserved for future use.

__last_op Values

The __last_op field is the most important of the __amrc fields. It defines the last 1/O
operation C/C++ was performing at the time of the I/O error. You should note that
the structure is neither cleared nor set by non-I/O operations, so querying this field

Chapter 4. Debugging C/C++ Routines 129

130

outside of a SIGIOERR handler should only be done immediately after 1/0O operations.
lists _Tast_op values you could receive and where to look for further

information.

Table 13. __last _op Values and Diagnosis Information

Value Further Information

__IO0_INIT Will never be seen by SIGIOERR exit value given at initialization.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

_ BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg (errno
== 66) filled in).

_ BSAM_NOTE NOTE returned O unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg (errno

== 65) filled in).

__ BSAM_CLOSE_T

Sets __error with return code from OS CLOSE TYPE=T.

_ BSAM_BLDL Sets __error with return code from OS BLDL macro.
__BSAM_STOW Sets __error with return code from OS STOW macro.
__TGET_READ Sets __error with return code from TSO TGET macro.
__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

_ TO_DEVTYPE Sets __error with return code from 1/O DEVTYPE macro.
__I0_RDJFCB Sets __error with return code from 1/0 RDJFCB macro.
__I0_TRKCALC Sets __error with return code from I/O TRKCALC macro.
__I0_OBTAIN Sets __error with return code from 1/0 CAMLST OBTAIN.
__I0_LOCATE Sets __error with return code from I/O CAMLST LOCATE.
__I0_CATALOG Sets __error with return code from 1/0 CAMLST CAT. The

associated macro is CATALOG.

__10_UNCATALOG

Sets __error with return code from 1/O CAMLST UNCAT. The
associated macro is CATALOG.

__10_RENAME

Sets __error with return code from 1/0 CAMLST RENAME.

_SVC99_ALLOC

Sets __alloc structure with info and error codes from SVC 99
allocation.

_SVC99_ALLOC_NEW

Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

_SVC99_UNALLOC

Sets __unalloc structure with info and error codes from SVC 99
unallocation.

__C_TRUNCATE

Set when C or C++ truncates output data. Usually this is data
written to a text file with no newline such that the record fills up
to capacity and subsequent characters cannot be written. For a
record 1/O file this refers to an fwrite() writing more data than the
record can hold. Truncation is always rightmost data. There is no
return code.

__C_FCBCHECK

Set when C or C++ FCB is corrupted. This is due to a pointer
corruption somewhere. File cannot be used after this.

z/OS V1R5.0 Language Environment Debugging Guide

Table 13. __last _op Values and Diagnosis Information (continued)

Value Further Information

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there is no
room left in a physical record for anymore double byte
characters. A new-line is not acceptable at this point. Truncation
will continue to occur until an Sl is written or the file position is
moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to start
any DBCS string or else when a redundant SO is written to the
file before an Sl. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a
DBCS string and data was written anyways, with an Sl to end it.
Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an Sl is written before the last double byte
character is completed, thereby forcing C or C++ to fill in the last
byte of the DBCS string with a padding byte X’FE’. Cannot
happen if MB_CUR_MAXis 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that allows
writing, but cannot be extended. Typically this is a member of a
partitioned data set being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM OPEN
succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM OPEN
succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM OPEN
succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM OPEN
succeeds, and the file type is ESDS.

__VSAM_MoDCB Set when a low level VSAM MODCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc and
__fdbk fields in the __amrc struct.

_ VSAM_GET Set when the last op was a low level VSAM GET; if the GET
fails, sets __rc and __fdbk in the __amrc struct.

__ VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT
fails, sets _ rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the POINT
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __fdbk in the __amrc struct.

_ VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ,; if the

ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

Chapter 4. Debugging C/C++ Routines 131

Table 13. __last _op Values and Diagnosis Information (continued)

Value Further Information

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,
otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,
otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an I/O
abend occurred.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if an I/O
abend occurred.

_ QSAM_CLOSE Sets __error to result of OS CLOSE macro.

__QSAM_OPEN Sets __error to result of OS OPEN macro.

_ CMS_OPEN Sets __error to result of FSOPEN.

__CMS_CLOSE Sets __error to result of FSCLOSE.

_ CMS_READ Sets __error to result of FSREAD.

__CMS_WRITE Sets __error to result of FSWRITE.

_ CMS_STATE Sets __error to result of FSSTATE.

__CMS_ERASE Sets __error to result of FSERASE.

_ CMS_RENAME Sets __error to result of CMS RENAME command.

__CMS_EXTRACT Sets __error to result of DMS EXTRACT call.

__CMS_LINERD Sets __error to result of LINERD macro.

__CMS_LINEWRT Sets __error to result of LINEWRT macro.

__CMS_QUERY __error is not set.

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a

hiperspace for a hiperspace memory file. If CREATE fails, stores
abend code in __amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

_ HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during termination. If
DELETE fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a hiperspace. If
READ fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace. If
WRITE fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write to a
hiperspace. If EXTEND fails, stores abend code in
__amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ TD.

132 2z/0S V1R5.0 Language Environment Debugging Guide

Table 13. __last _op Values and Diagnosis Information (continued)

Value Further Information

__LFS_OPEN Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|z/0S UNIX System Services Programming]
|Assembler Callable Services Referencel

__ LFS_CLOSE Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|z/0S UNIX System Services Programming]
|Assembler Callable Services Reference}

__LFS_READ Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|zZOS UNIX System Services Programming]
|Assembler Callable Services Reference

__LFS_WRITE Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|z/0S UNIX System Services Programming]
|Assembler Callable Services Reference]

_ LFS_LSEEK Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|z/0S UNIX System Services Programming]
|Assembler Callable Services Reference

_ LFS_FSTAT Sets __error with reason code from HFS services. Reason code
from HFS services must be broken up. The low order 2 bytes
can be looked up in|zZ0S UNIX System Services Programming]
|Assembler Callable Services Reference}

Displaying an Error Message with the perror() Function

To find a failing routine, check the return code of all function calls. After you have
found the failing routine, use the perror() function after the routine to display the
error message. perror() displays the string that you pass to it and an error
message corresponding to the value of errno. perror() writes to the standard error
stream (stderr).

If you need additional diagnostic information set the environment variable,
_EDC_ADD_ERRNO2 to 1, and that will append the current errno2 value to the end
of the perror() string.

is an example of a routine using perror().

#include <stdio.h>
int main(void){
FILE *fp;

fp = fopen("myfile.dat", "w");
if (fp == NULL)
perror("fopen error");

Figure 23. Example of a Routine Using perror()

Chapter 4. Debugging C/C++ Routines 133

Using __errno2() to Diagnose Application Problems

134

Use _errno2() when diagnosing problems in a z/OS UNIX or an OpenExtensions
application. This function enables C/C++ application programs to access diagnostic
information returned to the C/C++ run-time library from an underlying kernel callable
service. __errno2() returns the reason code of the last failing kernel callable
service called by the C/C++ run-time library. The returned value is intended for
diagnostic display purposes only. The function call is always successful.

Note: Since the _errno2() function returns the reason code of the kernel callable
service that last failed, and not all function calls invoke the kernel, the value
returned by __errno2() may be misleading.

Figure 24|is an example of a routine using __errno2().

#include <stdio.h>
#include <errno.h>
FILE *myfopen(const char xfn, const char *mode) {
FILE *f;
f = fopen(fn,mode);
if (f==NULL) {
perror("fopen() failed");
printf("__errno2 = %08x\n", __errno2());
1
return(f);

}

Figure 24. Example of a Routine Using __errno2()

Figure 25|is an example of a routine using the environment variable
_EDC_ADD_ERRNO2, and [Figure 26 on page 135|shows the sample output from
that routine.

#include <stdio.h>
#include <errno.h>

int main(void) {
FILE *fp;

/* add errno2 to perror message */
setenv("_EDC_ADD_ERRNO2","1",1);

fp = fopen("testfile.dat", "r");
if (fp == NULL)
perror("fopen error");

Figure 25. Example of a Routine Using _EDC_ADD_ERRNOZ2

z/OS V1R5.0 Language Environment Debugging Guide

fopen error: EDC5129I No such file or directory.
(errno2=0x05620062)

Figure 26. Sample Output of a Routine Using _EDC_ADD_ERRNO2

Using C/C++ Listings

The following sections discuss C/C++ listings generated when the executable
program is created. They also explain how to use these listings to locate
information, such as variable values and the timestamp, in the dump.

Generating C/C++ Listings and Maps

The two techniques for creating an executable program are:

* When the executable program is to be stored in a PDSE or HFS, use the binder
to combine the output from the C/C++ compiler.

* When the executable program is to be stored in a PDS, use Language
Environment Prelinker Utility to combine the output from the C/C++ compiler and
pass the prelinker output to the binder.

Note: Executable programs using XPLINK can only be created by using the binder.

The listings and maps created by the compile, prelink (optional), and link-edit steps
provide many pieces of information necessary for performing problem analysis
tasks. When creating an executable program without using the prelink step, the
map of the Writable Static Area (WSA) is provided by the binder in the output listing
in the C_WSA section.

In addition, the @STATIC is replaced by the binder with $PRIVnnnnnn and to find
the source listing use the cross reference to associate $PRIVnnnnnn with the
defining section name and use the section name to find the source in the module
map. So, the output listing provided by the binder should be used when locating
variables in executable programs created without using the prelink step.

When you are debugging, you can use various options depending upon which
compiler you are using. The following section provides a overview of each listing
and specifies the compiler option to use. For a detailed description of available
listings, see [0S C/C++ User’s Guide,

Table 14. Contents of Listing and Associated Compiler Options

Name

Compiler Option Function

Pseudo-assembler
listing

LIST Generates a pseudo-assembler listing, which shows the
source listing for the current routine.

Storage Offset Listing XREF Produces a storage offset listing, which includes in the

source listing a cross reference table of names used in the
routine and the line numbers on which they were declared or
referenced, and a static map.

Structure Map

AGGREGATE (C only) Causes a structure map to be included in the source listing.
The structure map shows the layout of variables for the type
struct or union.

Chapter 4. Debugging C/C++ Routines 135

Table 14. Contents of Listing and Associated Compiler Options (continued)

Name Compiler Option

Function

Inline Report INLRPT and
INLINE(,REPORT,,)

Generates an inline report that summarizes all functions
inlined and provides a detailed call structure of all the
functions.

Prelinker Map MAP (prelink option)

Creates the prelinker map when invoking the Prelinker. It is
the default. You can use prelinker maps to determine the
location of static and external C variables compiled with the
RENT option and all C++ variables.

Link-edit Output Listing MAP, LIST, XREF (linker

These options control the listing output from the link-edit

option) process.

Source Listing SOURCE Generates the source listing, which contains the original
source input statements and any compiler diagnostic
messages issued for the source.

Cross-Reference XREF Cross-reference table containing a list of the identifiers from

Listing

the source program and the line numbers in which they
appear.

External Symbol Cross ATTR (C only) or XREF
Reference Listing

Shows the original name and corresponding mangled name
for each symbol.

Object File Map IPA(MAP) LIST Displays the names of the object files that were used as
input to the IPA Link step.
Source File Map IPA(MAP) LIST Identifies the source files included in the object files.

Compiler Options Map IPA(MAP) LIST

Identifies the compiler options that were specified during the
IPA Compile step for each compilation unit that is
encountered when the object file is processed.

Global Symbols Map ~ IPA(MAP) LIST

Shows how global symbols are mapped into members of
global data structures by the global variable coalescing
optimization process.

Inline Report for IPA IPA(MAP) LIST
Inliner

Describes the actions performed by the IPA Inliner.

C, C++, and C/C++ IPA Listings

The options for each listing vary depending upon which Compiler is used. The
following section illustrates which options are available for each listing.

C Compiler Listings: The following table specifies which listings are available for
the C compiler, and which option(s) must be specified to obtain it.

Table 15. C Compiler Listings

Name Compiler Option

Source Program SOURCE

Cross-Reference Listing XREF

Structure and Union Maps AGGREGATE

Inline Report OPTIMIZE and INLINE(,REPORT,,) or
INLRPT

Pseudo Assembly Listing LIST

Storage Offset Listing XREF

C++ Compiler Listings: The following table specifies which listings are available
for the C++ compiler, and which option(s) must be specified to obtain it.

136 z/0S V1R5.0 Language Environment Debugging Guide

Table 16. C++ Compiler Listings

Name Compiler Option

Source Program SOURCE

Cross-Reference Listing ATTR and XREF

Inline Report OPTIMIZE and INLINE(,REPORT,,) or
INLRPT

Pseudo Assembly Listing LIST

External Symbol Cross Reference Listing ATTR or XREF

C/C++ IPA Link Step Listings: The following table specifies which listings are
available for the C/C++ IPA Link Step, and which option(s) must be specified to
obtain it.

Table 17. C/C++ IPA Link Step Listings

Name Compiler Option
Object File Map IPA (MAP) LIST
Source File Map IPA (MAP) LIST
Compiler Options Map IPA (MAP) LIST
Global Symbols Map IPA (MAP) LIST
Inline Report for IPA Inliner IPA (MAP) LIST
Partition Map IPA (MAP) LIST

Finding variables

You can determine the value of a variable in the routine at the point of interrupt by
using the compiled code listing as a guide to its address, then finding this address
in the Language Environment dump. The method you use depends on the storage
class of variable.

This method is generally used when no symbolic variables have been dumped (by
using the TEST compiler option).

It is possible for the routine to be interrupted before the value of the variable is
placed in the location provided for it. This can explain unexpected values in the
dump.

Steps for finding automatic variables
Perform the following steps to find automatic variables in the Language
Environment dump:

1. Identify the start of the stack frame. If a dump has been taken, each stack
frame is dumped. The stack frames can be cross-referenced to the function
name in the traceback.

2. Determine the value of the base register (in this example, GPR13) in the Saved
Registers section for the function you are interested in.

3. Find the offset of the variable (which is given in decimal) in the storage offset
listing.
Example:
aal 85-0:85 Class = automatic, Offset = 164(rl3), Length = 40
4. Add this base address to the offset of the variable.

Chapter 4. Debugging C/C++ Routines 137

138

When you are done, the contents of the variable can be read in the DSA Frame
section corresponding to the function the variable is contained in.

Locating the Writable Static Area

The Writable Static Area (WSA) address is the base address of the writable static
area which is available for all C and C++ programs except C programs compiled
with the NORENT compile option. If you have C code compiled with the RENT
option or C++ code (hereafter called RENT code) you must determine the base
address of the WSA if you want to calculate the address of a static or external
variable. Use the following table to determine where to find the WSA base address:

Table 18. Finding the WSA base address

If you want the WSA base address for: Locate the WSA base address in:

application code the WSA address field in the Enclave Control
Blocks section

a fetched module the WSA address field of the Fetch()

Information section for the fetch() function
pointer for which you are interested

a DLL the corresponding WSA address in the DLL
Information section

Use the WSA base address to locate the WSA in the Enclave Storage section.

Steps for finding the static storage area

If you have C code compiled with the NORENT option (hereafter called NORENT
code) you must determine the base address of the static storage area if you want to
calculate the address of a static or external variable.

Perform the following steps to find the static storage area:

1. Name the static storage area CSECT by using the pragma csect directive.
Once this is done, a CSECT is generated for the static storage area for each
source file.

2. Determine the origin and length of the CSECT from the linker map.

3. Locate the external variables corresponding to the CSECT with the same name.

4. Determine the origin and length of the external variable CSECT from the linker
map.

Notes:

1. Address calculation for static and external variables uses the static storage area
as a base address with 1 or more offsets added to this address.

2. The storage associated with these CSECTSs is not dumped when an exception
occurs. It is dumped when cdump or CEE3DMP is called, but it is written to a
separate ddname called CEESNAP. For information about cdump, CEE3DMP,
and enabling the CEESNAP ddname, see [‘Generating a Language Environment
[Dump of a C/C++ Routine” on page 145)

Steps for finding RENT static variables

Before you begin: You need to know the WSA. To find this information, see
[‘Locating the Writable Static Area.”| For this procedure’s example, the address of
writable static is X'02D66E40'".

Perform the following steps to find RENT static variables:

z/OS V1R5.0 Language Environment Debugging Guide

1. Find the offset of @STATIC (associated with the file where the static variable is
located) in the Writable Static Map section of the prelinker map.

Example:

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHCOO11
4 1 00001 DFHC0O010
8 2 00001 DFHDUMMY
C 2 00001 DFHB0O25
10 2 00001 DFHB0O24
14 2 00001 DFHBOOZ23
18 2 00001 DFHB0O22
1C 2 00001 DFHBOO21
20 2 00001 DFHB0O20
24 2 00001 DFHEIBO
28 4 00001 DFHEIPTR
2C 4 00001 DFHCPO11
30 4 00001 DFHCPO10
34 4 00001 DFHBPO25
38 4 00001 DFHBPO24
3C 4 00001 DFHBPO23
40 4 00001 DFHBPO22
44 4 00001 DFHBPOZ21
48 4 00001 DFHBPO20
4C 4 00001 DFHEICB
50 4 00001 DFHEIDO
54 4 00001 DFHLDVER
58 278 00001 @STATIC
720 30 00002 @STATIC

Figure 27. Writable Static Map Produced by Prelinker

In this Writable Static Map section of a prelinker map the offset is X'58'.

2. Add the offset to the WSA to get the base address of static variables.
Example: X'02D66E40' + X'58' = X'2D66E98'

3. Find the offset of the static variable in the partial storage offset compiler listing.
Example:
sa0 66-0:66 Class = static, Location = WSA + Q@STATIC + 96, Length = 4

The offset is 96 (X'60)).

4. Add the offset of the static variable in the partial storage offset compiler listing
(found in step 3) to the base address of static variables (calculated in step 2).

Example: X'2D66E98' + X'60' = X'2D66EF8'

When you are done, you have the address of the value of the static variable in the
Language Environment dump.

[Figure 28 on page 140|shows the path to locate RENT C++ and C static variables
by adding the address of writable static, the offset of @ STATIC, and the variable
offset.

Chapter 4. Debugging C/C++ Routines 139

Writable Static Area

offset
of .
@STATIC Wh----=-=-=-=-=-1 writable

offset of variable static
—> [

Figure 28. Location of RENT Static Variable in Storage

Steps for finding external RENT variables

Before you begin: You need to know the WSA. To find this information see
[Locating the Writable Static Area” on page 138.|For this procedure’s example, the
address of writable static is X'02D66E40'.

Perform the following steps to find external RENT variables:
1. Find the offset of the external variable in the Prelinker Writable Static Map.

Example:
In this example, the offset for DFHEIPTR is X'28'.

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHCOO11
4 1 00001 DFHC0010
8 2 00001 DFHDUMMY
C 2 00001 DFHBOO25
10 2 00001 DFHB0O24
14 2 00001 DFHBOOZ23
18 2 00001 DFHB0O22
1C 2 00001 DFHBOOZ21
20 2 00001 DFHB0O20
24 2 00001 DFHEIBO

28 4 00001 DFHEIPTR
2C 4 00001 DFHCPO11
30 4 00001 DFHCPO10
34 4 00001 DFHBPO25
38 4 00001 DFHBPO24
3C 4 00001 DFHBPO23
40 4 00001 DFHBPO22
44 4 00001 DFHBPOZ21
48 4 00001 DFHBPO20
4C 4 00001 DFHEICB

50 4 00001 DFHEIDO

54 4 00001 DFHLDVER
58 420 00001 @STATIC

Figure 29. Writable Static Map Produced by Prelinker

2. Add the offset of the external variable to the address of writable static.
Example: X'02D66E40' + X'28' = X'2D66E68'

When you are done, you have the address of the value of the external variable in
the Language Environment dump.

140 z/0S V1R5.0 Language Environment Debugging Guide

Steps for finding NORENT static variables

Before you begin: You need to know the name and address of the static storage
area. To find this information see [‘Steps for finding the static storage area” on pagel
For this procedure’s example, the static storage area is called STATSTOR and
has an address of X'02D66E40'.

Perform the following steps to find external RENT variables:

1. Find the offset of the static variable in the partial storage offset compiler listing.
Example:
sa0 66-0:66 Class = static, Location = STATSTOR +96, Length = 4

The offset is 96 (X'60").
2. Add the offset to the base address of static variables.
Example: X'2D66E40' + X'60' = X'2D66EAQ'

When you are done, you have the address of the value of the static variable in the
Language Environment dump.

shows how to locate NORENT C static variables by adding the Static
Storage Area CSECT address to the variable offset.

Static Storage Area CSECT

writable

| offset of variable tati
» [sal static
area

Figure 30. Location of NORENT Static Variable in Storage

Steps for finding external NORENT variables

Before you begin: You need to find the address of the external variable CSECT. To
find this information, see |“Steps for finding the static storage area” on page 138.|
For this procedure’s example, the address of the external variable CSECT is
X'02D66E40'".

The address of the external variable CSECT is the address of the value of the
external variable in the Language Environment dump.

Steps for finding the C/370 parameter list

Perform the following steps to locate a parameter in the Language Environment

dump:

1. Indentify the address of the start of the parameter list. A pointer to the
parameter list is passed to the called function in register 1. This is the address
of the start of the parameter list. [Figure 31 on page 142|shows an example
code for the parameter variable.

Example:

Chapter 4. Debugging C/C++ Routines 141

142

funpO() {
fu:ncl(al,aZ);

}

funcl(int ppx, int pp0) {

}

Figure 31. Example Code for Parameter Variable

Parameters ppx and pp0 correspond to copies of a7 and a2 in the stack frame
belonging to funco.

2. Use the address of the start of the parameter list to find the register and offset
in the partial storage offset listing.

Example:
ppo 62-0:62 Class = parameter, Location = 4(rl), Length = 4

The offset is 4 (X'4') from register 1.

3. Determine the value of GPR1 in the Saved Registers section for the function that
called the function you are interested in.

4. Add this base address to the offset of the parameter.

When you are done, the contents of the variable can then be read in the DSA frame
section corresponding to the function the parameter was passed from.

Steps for finding the C++ parameter list
Before you begin: To locate C++ functions with extern C attributes, see
fiinding the C/370 parameter list’ on page 141

Perform the following steps to find the C++ parameter list:

1. Indentify the address of the start of the parameter list. A pointer to the
parameter list is passed to the called function in register 1. This is the address
of the start of the parameter list. shows an example code for the
parameter variable.

Example:

funf:O() {
fu:ncl(al,az);

}

funcl(int ppx, int pp0) {

.

Figure 32. Example Code for Parameter Variable

Parameters ppx and pp0 correspond to copies of af and a2 in the stack frame
belonging to funcl.

z/OS V1R5.0 Language Environment Debugging Guide

2. Locate the value of the base register in the Saved Registers section of the
function you are interested in.

3. Find the offset of the static variable in the partial storage offset compiler listing.
Example:

s

ppx 62-0:62 Class
ppo 62-0:62 Class

188(r13), Length
192(r13), Length

parameter, Location
parameter, Location

o
~

Figure 33. Partial Storage Offset Listing

4. Add the value of the base register to the offset.
5. Locate the parameter.

Restriction: When OPTIMIZE is on, the parameter value might never be stored,
since the first few parameters might be passed in registers and there might be no
need to save them.

Steps for finding members of aggregates

You can define aggregates in any of the storage classes or pass them as
parameters to a called function. The first step is to find the start of the aggregate.
You can compute the start of the aggregate as described in previous sections,
depending on the type of aggregate used.

The aggregate map provided for each declaration in a routine can further assist in
finding the offset of a specific variable within an aggregate. Structure maps are
generated using the AGGREGATE compiler option. [Figure 34| shows an example of
a static aggregate.

static struct {
short int ssO1;

char ss02[56];
int sz0[6];
int ss03;

} ss0;

Figure 34. Example Code for Structure Variable

[Figure 35 on page 144|shows an example aggregate map.

Chapter 4. Debugging C/C++ Routines 143

O0ffset Length Member Name
Bytes(Bits) Bytes(Bits)
0 2 ss01
2 56 ss02[56]
58 2 #%x%kPADDING***
60 24 sz0[6]
84 4 ss03

Figure 35. Example of Aggregate Map

Assume the structure has been compiled as RENT. To find the value of variable

sz0[0]:

1. Find the address of the writable static. For this example the address of writable
static is X'02D66E40'".

2. Find the offset of @ STATIC in the Writable Static Map. In this example, the
offset is X'58'. Add this offset to the address of writable static. The result is
X'2D66E98' (X'02D66E40' + X'58'). shows the Writable Static Map
produced by the prelinker.

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHCOO11
4 1 00001 DFHCOO10
8 2 00001 DFHDUMMY
C 2 00001 DFHB0O25
10 2 00001 DFHB0OOZ24
14 2 00001 DFHB0O23
18 2 00001 DFHB0O22
1C 2 00001 DFHBOOZ21
20 2 00001 DFHB0O20
24 2 00001 DFHEIBO

28 4 00001 DFHEIPTR
2C 4 00001 DFHCPO11
30 4 00001 DFHCPO10
34 4 00001 DFHBPO25
38 4 00001 DFHBPO24
3C 4 00001 DFHBPO23
40 4 00001 DFHBPO22
44 4 00001 DFHBPO21
48 4 00001 DFHBPO20
4c 4 00001 DFHEICB

50 4 00001 DFHEIDO

54 4 00001 DFHLDVER
58 320 00001 @STATIC

Figure 36. Writable Static Map Produced by Prelinker

144 z/0S V1R5.0 Language Environment Debugging Guide

3. Find the offset of the static variable in the storage offset listing. The offset is 96
(X'60". Following is an example of a partial storage offset listing.

ss0O 66-0:66 Class = static, Location = GPR13(96), Length = 4

Add this offset to the result from step 2. The result is X2D66EF8' (X'2D66E98" +
X'60"). This is the address of the value of the static variable in the dump.

4. Find the offset of sz0 in the Aggregate Map, shown in |Figure 35 on page 144l
The offset is 60.

Add the offset from the Aggregate Map to the address of the ssO struct. The result
is X'60' (X'3C' + X'60"). This is the address of the values of sz0 in the dump.

Finding the Timestamp

The timestamp is in the compile unit block. The address for the compile unit block
is located at eight bytes past the function entry point. The compile unit block is the
same for all functions in the same compilation. The fourth word of the compile unit
block points to the timestamp. The timestamp is 16 bytes long and has the following
format:

YYYYMMDDHHMMSSSS

Generating a Language Environment Dump of a C/C++ Routine

cdump()

You can use either the CEE3DMP callable service or the cdump(), csnap(), and
ctrace() C/C++ functions to generate a Language Environment dump of C/C++
routines. These C/C++ functions call CEE3DMP with specific options.

If your routine is running under z/OS or CICS, you can generate useful diagnostic
information by using the cdump() function. cdump() produces a main storage dump
with the activation stack. This is equivalent to calling CEESDMP with the option
string: TRACEBACK BLOCKS VARIABLES FILES STORAGE STACKFRAME(ALL)
CONDITION ENTRY.

When cdump () is invoked from a user routine, the C/C++ library issues an OS
SNAP macro to obtain a dump of virtual storage. The first invocation of cdump()
results in a SNAP identifier of 0. For each successive invocation, the ID is
increased by one to a maximum of 256, after which the ID is reset to 0.

The output of the dump is directed to the CEESNAP data set. The DD definition for
CEESNAP is as follows:

//CEESNAP DD SYSOUT= =

If the data set is not defined, or is not usable for any reason, cdump() returns a
failure code of 1. This occurs even if the call to CEE3SDMP is successful.

If the SNAP is not successful, the CEESDMP DUMP file displays the following
message:

Snap was
unsuccessful

If the SNAP is successful, CEE3DMP displays this message:

Snap was
successful; snap ID = nnn

Chapter 4. Debugging C/C++ Routines 145

cshap()

ctrace()

Where nnn corresponds to the SNAP identifier described above. An unsuccessful
SNAP does not result in an incrementation of the identifier.

Because cdump() returns a code of 0 only if the SNAP was successful or 1 if it was
unsuccessful, you cannot distinguish whether a failure of cdump() occurred in the
call to CEE3DMP or SNAP. A return code of 0 is issued only if both SNAP and
CEE3DMP are successful.

Support for SNAP dumps using the _cdump function is provided only under z/OS
and z/VM. SNAP dumps are not supported under CICS; no SNAP is produced in
this environment. A successful SNAP results in a large quantity of output. A routine
calling cdump () under CICS receives a return code of 0 if the ensuing call to
CEE3DMP is successful. In addition to a SNAP dump, a Language Environment
formatted dump is also taken.

The csnap() function produces a condensed storage dump. csnap() is equivalent to
calling CEE3DMP with the option string: TRACEBACK FILES BLOCKS VARIABLES
NOSTORAGE STACKFRAME(ALL) CONDITION ENTRY.

To use these functions, you must add #include <ctest.h> to your C/C++ code. The
dump is directed to output dumpname , which is specified in a //CEEDUMP DD
statement in MVS/JCL or a FILEDEF CEEDUMP command in z/VM.

cdump (), csnap(), and ctrace() all return a 1 code in the SPC environment
because they are not supported in SPC.

Refer to the |zZ0S C/C++ Run-Time Library Reference|for more details about the
syntax of these functions.

The ctrace() function produces a traceback and includes the offset addresses from
which the calls were made. ctrace() is equivalent to calling CEE3SDMP with the
option string: TRACEBACK NOFILES NOBLOCKS NOVARIABLES NOSTORAGE
STACKFRAME(ALL) NOCONDITION NOENTRY.

Sample C Routine that Calls cdump

[Figure 37 on page 147|shows a sample C routine that uses the cdump function to
generate a dump.

[Figure 42 on page 151|shows the dump output.

146 z/0S V1R5.0 Language Environment Debugging Guide

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

void hsigfpe(int);
void hsigterm(int);
void atfl(void);

typedef int (*FuncPtr_T)(void);

int stl = 99;
int st2 = 255;
int xcount = 0

int main(void) {
/*
* 1) Open multiple files
% 2) Register 2 signals
* 3) Register 1 atexit function
*x 4) Fetch and execute a module

*/

FuncPtr_T fetchPtr;

FILE* fpl;

FILE* p2;

int rc;

fpl = fopen("myfile.data", "w");
if (!fpl) {

perror("Could not open myfile.data for write");
exit(101);
}

fprintf(fpl, "record 1\n");
fprintf(fpl, "record 2\n");
fprintf(fpl, "record 3\n");

fp2 = fopen("memory.data", "wb,type=memory");

if (1fp2)
perror("Could not open memory.data for write");
exit(102);

}

fprintf(fp2, "some data");

fprintf(fp2, "some more data");

fprintf(fp2, "even more data");

signal (SIGFPE , hsigfpe);
signal (SIGTERM, hsigterm);

rc = atexit(atfl);

if (rc) {
fprintf(stderr, "Failed on registration of atexit function atfl\n");
exit(103);

}

Figure 37. Example C Routine Using cdump to Generate a Dump (Part 1 of 2)

Chapter 4. Debugging C/C++ Routines 147

fetchPtr = (FuncPtr_T) fetch("MODULEL");

if (!fetchPtr) {
fprintf(stderr, "Failed to fetch MODULE1\n");
exit(104);

}
fetchPtr();
return(0);

}

void hsigfpe(int sig) {
++stl;
return;

}

void hsigterm(int sig) {
++st2;
return;

}

void atfl() {
++xcount;

}

Figure 37. Example C Routine Using cdump to Generate a Dump (Part 2 of 2)

Figure 38|shows a fetched C module:

#include <ctest.h>

#pragma linkage(funcl, fetchable)
int funcl(void) {
cdump("This is a sample dump");
return(0);

}

Figure 38. Fetched module for C routine

Sample C++ Routine that Generates a Language Environment Dump

[Figure 39 on page 149|shows a sample C++ routine that uses a protection
exception to generate a dump.

148 2z/0S V1R5.0 Language Environment Debugging Guide

#include <iostream.h>
#include <ctest.h>
#include "stack.h"

int main() {
cout << "Program starting:\n";
cerr << "Error report:\n";

Stack<int> x;

x.push(1);

cout << "Top value on stack : " << x.pop() << '"\n';
cout << "Next value on stack: " << x.pop() << '\n';
return(0);

Figure 39. Example C++ Routine with Protection Exception Generating a Dump

Figure 40| shows the template file stack.c

#ifndef _ STACK _
#include "stack.h"
#endif

template <class T> T Stack<T>::pop() {
T value = head->value;
head = head->next;

return(value);
}
template <class T> void Stack<T>::push(T value) {
Node* newNode new Node;
newNode->value = value;
newNode->next = head;
head = newNode;

Figure 40. Template file STACK.C

[Figure 41 on page 150|shows the header file stack.h.

Chapter 4. Debugging C/C++ Routines

149

#ifndef _ STACK_
#define _ STACK _
template <class T> class Stack {
pubTic:
Stack() {
char* badPtr = 0; badPtr -= (0x01010101);
head = (Nodex) badPtr; /* head initialized to OxFEFEFEFF =%/

T pop();
void push(T);
private:
struct Node {
T value;
struct Node* next;
}* head;
}s
#endif

Figure 41. Header file STACK.H

Sample Language Environment Dump with C/C++-Specific Information

This sample dump was produced by compiling the routine in [Figure 37 on page 147|
with the TEST(SYM) compiler option, then running it. Notice the sequence of calls
in the traceback section - EDCZMINV is the C-C++ management module that
invokes main and @ @ FECBMODULE1 fetches the user-defined function funcl,
which in turn calls the library routine __cdump.

If source code is compiled with the GONUMBER or TEST compile option, statement
numbers are shown in the traceback. If source code is compiled with the TEST(SYM)
compile option, variables and their associated type and value are dumped out. For
more information about C/C++-specific information contained in a dump, see
[‘Finding C/C++ Information in a Language Environment Dump” on page 156.|

150 z/0S V1R5.0 Language Environment Debugging Guide

CEE3DMP V1 R3.0: This is a sample dump
CEE3DMP called by program unit (entry point _ cdump) at offset +00000184.
Snap was unsuccessful

Registers on Entry to CEE3DMP:

PM....... 0100

GPRO..... 00000000 GPRI..... 000305D0 GPR2..... 00030564 GPR3..... 8DD5CBO6
GPR4..... 00000001 GPR5..... 00000015 GPR6..... ODEB54D8 GPR7..... 00000001
GPR8..... 00000000 GPR9..... ODEB5038 GPR10.... 8DB50310 GPRI1.... 8DB50310
GPR12.... 00023890 GPR13.... 000304E0 GPR14.... 800260DE GPR15.... 8DB6C670
FPRO..... 4D000000 00060388 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

Information for enclave main
Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

PM..vuet 0100
GPRO..... 00000000 GPRI1..... 000305D0 GPR2..... 00030564 GPR3..... 8DD5CB
GPR4..... 00000001 GPR5..... 00000015 GPR6..... ODEB54D8 GPR7..... 000000
GPRS8..... 00000000 GPR9..... ODEB5038 GPR10.... 8DB50310 GPR11.... 8DB503
GPR12.... 00023890 GPR13.... 000304E®@ GPR14.... 800260DE GPR15.... 8DB6C6
FPRO..... 4D000000 00060388 FPR2..... 00000000 00000000
FPR4..... 00000000 00000000 FPR6..... 00000000 00000000
Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
000304E0 ODD5CAB8 +00000184 _ cdump ODD5CAB8 +00000184 CEEEV003 Call
00030440 POSIX.CRTL.C(MODULE1)
0DB50310 +0000006E funcl 0DB50310 +0000006E 5 MODULE1 Call
00030350 ODEB54F8 -ODEB54F3 @EFECBMODULE1 ODEB54F8 -ODEB54F3 Call
00030298 ODCB4AE8 +0000001A @QGETFN 0DCB4A40 +000000C2 CEEEV003 Call
000301EO0 POSIX.CRTL.C(CSAMPLE)
0DB51078 +00000392 main 0DB51078 +00000392 64 CSAMPLE Call
000300C8 ODC626EE +000000B4 EDCZMINV ODC626EE +000000B4 CEEEV003 Call
00030018 CEEBBEXT 0001B898 +0000013C CEEBBEXT 0001B898 +0000013C CEEBINIT Call

Parameters, Registers, and Variables for Active Routines:

main (DSA address 000301E0):

Saved Registers:

GPRO..... ODEB5330 GPRI..... 8DCI9EEBA GPR2..... 8DC627A2 GPR3..... 8DB510C6
GPR4..... 8001B97C GPR5..... ODEB5098 GPR6..... ODEB5330 GPR7..... 0DB523DC
GPR8..... 00000001 GPR9..... 80000000 GPR10.... 8DC626E2 GPR11.... 8001B898

GPR12.... 00023890 GPR13.... 000301EO0 GPR14.... 8DB5140C GPR15.... ODCB4A40

Local Variables:

fetchPtr signed int (*) (void)
0xDEB5330
fp2 struct _ ffile « OxDEBEA1C
fpl struct _ ffile = 0xDEBD024
rc signed int 0

Figure 42. Example Dump from Sample C Routine (Part 1 of 6)

Chapter 4. Debugging C/C++ Routines 151

[1] Storage for Active

Control Blocks for Ac

DSA for funcl: 0003
+000000
+000010
+000024
+000038
+00004C
+000064
+000078

reserved
reserved

DSA frame:
+000000
+000020
+000040
+000060
+000080

00030440
00030440
00030460
00030480
000304A0
000304C0O

FLAGS....

Routines:

tive Routines:

0440

1002

. ODD5CAB8
. 8001B97C
. ODB6E66E
. 000304E0
. 000303D4
. 00000000

100247D0 00030350
8DB5035E 8001B97C
8DB6C670 00023890
00000000 000303D4
40404040 40404040

member.

.. 47D0

F7F20000
ODEB54D8
000247D0
00030350
0DB68414

[2] Control Blocks Associated with the Thread:

CAA: 00023890
+000000 00023890
+000020 000238B0
+000040 000238D0
+000060 000238F0
+000080 00023910

[2A] C/370 CAA inform
C-C++ Specific CTHD
C-C++ Specific CEDB

C-C++ Specific Thre
+000000 0DB6740C
+000020 0DB6742C
+000040 0DB6744C
+000060 ODB6746C
+000080 0DB6748C

C-C++ Specific EDB
+000000 0DB67DE4
+000020 ODB67E0Q4
+000040 ODB67E24
+000060 ODB67E44

00000800
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

ation :
0DB6740C
0DB67DE4

ad block:
C3E3C8C4
00000000
00000000
00000001
ODEB54B0O

0DB6740C
00000308
00000000
00000000
00000000
ODEB54AC

block: ODB67DE4

C3C5C4C2 000004D0O
00000080 ODB50FD8
ODEB54F8 00000001
00004650 0DB683CC

00030000
00024A10
00000000
00000000
00000000

0DB6740C
00000000
00000000
00000000
ODEB54A0

0DB67DE4
00000000
00000000
40400000

000304E0
ODEB54D8
ODB6D66F
000304B0
reserved. 00030350
reserved. D3C5F140

8DB50380
ODEB5330
000304E0
00030538
40404040

00050000
00000000
00000000
00000000
00000000

00000000
00000000
00024640
00000000
ODEB54A4

0DB52B40
00000000
ODEB5388
00000000

reserved. 8DBFE208
MODE.

00030350
000304D8
ODEB5330
8DB6C670

00030538

0DD5CAB8
0DB523DC
000304B0
00000000
40404040

000304E0
00000001
8DBFE208
00000000
40404040

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
80020760
00000000

0DC3865E
0DB677EC
00024728
00000000
ODEB54C0

00000000
00000000
00000000
00000000
00000000

00030000
00000000
0DB67CBO
00100000

0DB691C4
0DB682BC
0DB67A58
00000000

0DB50BO8 000304EC
reserved. 00000000

F7F20000
8DC5A732
0DB523DC
00023890

000304D8 8DC5A732
ODB6E66E ODB6D66F
0DB50B0O8 000304EC
00000000 D3C5F140
ODEB54D8 40404040

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
ODEB54B8
00000000

00000000
00000000
00000001
ODEB54B4
00000000

0DB69514
0DC3DFBO
0DB67B84
00000000

0DB51078
ODC3DE20
0DC95196
00000000

reserved. 000247D0
00000000
00000000

8DB50380
8DB5035E
00000001

152

Figure 42. Example Dump from Sample C Routine

(Part 2 of 6)

z/OS V1R5.0 Language Environment Debugging Guide

[2B] errno value.......cevvunn..
memory file block chain.....
open FCB chain..............
GTAB table.........covvvnnn.

[3] signal information :
SIGFPE
function pointer... 0DB51D20

SIGTERM
function pointer... ODB51E90

SIGOBJECT
function pointer... ODB67A58

Enclave variables:

*

.*,C(CSAMPLE) :>hsigterm

void ()
.C(CSAMPLE) :>hsigfpe

void ()
.C(CSAMPLE) :>xcount

signed int
.C(CSAMPLE) :>main

signed int

*

*

*

*

.C(CSAMPLE) :>atf1

void (void)
.C(CSAMPLE) :>st2

signed int
.C(CSAMPLE) :>st1

signed int
.C(MODULE1) :>funcl

signed int

*

*

*

Enclave Control Blocks:
EDB: 000228B0

+000000 000228B0 C3C5C5C5
+000020 000228D0 00022D78
+000040 000228FO 00000000
+000060 00022910 8001C8D8
+000080 00022930 00000000
+0000A0 00022950 00000001

MEML: 00023750

+000000 00023750 00000000
+000020 00023770 00000000
+000040 00023790 00000000
+000060 000237BO - +00011F

[4] WSA addresS.....eeeeeeeennn.

[5] atexit information :
function pointer... 8DB51FF8

[6]

fetch information :

fetch pointer : ODEB54F8
function pointer... 8DB50310

Enclave Storage:
Initial (User) Heap

+000000 ODEB5000 C8C1D5C3
+000020 ODEB5020 ODEB5000
+000040 ODEB5040 0DB67A6C

LE/370 Anywhere Heap

+000000 ODEB100O C8C1D5C3
+000020 ODEB1020 ODEB1000
+000040 ODEB1040 00000000

ODEBEBAO
ODEBEA30
0DB6771C

WSA a

WSA a

WSA a

(void)

(void)

C4C24040
00022DA8
00000000
00000000
00000000
00000000

00000000
00000000
00000000
0002386F

ODEB5038

WSA a

WSA a

00022D48
00000190
0DB67CC4

00022D78
00001008
00000000

ddress... 8DEB5038 function name...

ddress... 8DEB5038 function name...

hsigfpe

hsigter

m

ddress... 0DB67B84 function name... (unknown)

OxDB51E90
0xDB51D20

0

0xDB51078

OxDB51FF8

255

99

0xDB50310

C0000001 00023750 00022EF8 00000000
00025038 00022558 00000000 80021808
0000CFBO 00000000 00000000 00000000
0DB69864 00000000 00024AE0 00000000
00000000 00000000 00000001 60000000
00000000 00000000 00000000 60000000

ODBBBOB8 00000000 00000000 60000000

ODBBBOB8 00000000 ©DB67DE4 00000000

ODBBBOB8 00000000 00000000 00000000
same as above

ddress... ODEB5038 function name...

ddress... ODEB5480

: ODEB5000
00022D48 00000000 ODEB5000 ODEB55D0
00000000 00000000 00000000 00000000
00000000 00000000 00000000 60000000

: ODEB1000
00022D78 00022D78 ODEB1000 ODEB3C18
00000000 00000000 00000000 60000000
00000000 00000000 00000000 00000000

00000000
00022900
0DB646F0
0DC2A620
00008A08
00000000

0DBBBOB8
8DC2B6B8
0DBBBOB8

atfl

00008000
00000000
00000000

00004000
00000000
00000000

00000000
00008000
ODEB54C8
00023890
008DA738
00000001

00000000
00000000
00000000

00007A30
0DB67B98
00000000

000013E8
00000000
00000000

.................. B U
HANC.....ovvuunnnn P
B #q
% BD e

‘HANC Y

Figure 42. Example Dump from Sample C Routine (Part 3 of 6)

Chapter 4. Debugging C/C++ Routines

153

LE/370 Below Heap
+000000 00050000
+000020 00050020
+000040 00050040
+000060 00050060

: 00050000
80050000 000500A8
00000000 00800001
00000000 00000000 00000000
00000000 00000000 00000000

C8C1D5C3 00022DA8
00050000 00000088
04000000 00000000
00000000 00000000

00022DA8
C3E2E3D2
00000000
00000000

00022DA8
00000000

00002000
00000002
00000000
00000000

00001F58
00000068
00000000
00000000

+000080 00050080 - +001FFF 00051FFF same as above

Additional Heap, heapid = ODEB3BE4
+000000 0DB14000 C8C1D5C3 ODEB3BE4
+000020 0DB14020 ©DB14000 00000050
+000040 ODB14040 00000003 ©DB50580
+000060 0DB14060 ©DB50568 ODB503CO
+000080 0DB14080 C3D9E3D3 4BC34DD4

: 0DB14000
0DB14000 0DB143D0O
0DB50310 0DB14098
00000000 ODB50310
0DB14000 00000020
0DB14000 00000088

ODEB3BE4
00000000
00020000
00000000
D6C4EA4D3

ODEB3BE4
0DB503AC
0DB14078
00000000
C5F15D00

000003E8
ODEB54F8
0DB50310
0015D7D6
0DB14028

00000018
46F11000
00000000
E2C9E74B
00010000

CRTL.C(MODULE1)...

File Status and Attributes:

[7] File Control Block:
+000000 ODEBEA30
+000020 ODEBEA50
+000040 ODEBEA70
+000060 ODEBEA9O
+000080 ODEBEABO
+0000A0 ODEBEADO
+0000CO ODEBEAFO
+0000EO ODEBEB10
+000100 ODEBEB30

ODEBEA30
ODEBED65
00000014
00000000
ODC840F8
ODEBED40
00000000
43020008
00000000
00000000

00000000
00000000
FFFFFFFF
0DC71578
ODEBED40
00000000
40001000
00000000
00000000

000003DB
00000000
00080055
00000000
00000000
00000000
00000000
00000000
00000000

ODEBEBOO
ODEBDO38
ODEBEB70
00000400
00000000
00000000
0DB66DDC
00000000
00000000

ODEBEB20
00000000
ODEBEB44
00000400
00000000
0DC68140
58FFO008
58FF0008
00000000

00000000
ODEBEA30
0DC81810
00000000
00000000
00000000
07FFO000
07FF0000
00000000

ODEBEB50
00000000
0DC83A08
00000000
00000000
00000000
0DC67BF8
0DC80088
80000020

00000011
00000000
0DC83C88
00000400
00000000
00000000
00000000
00000000
ODEBDOOO

fldata FOR FILE:
recfmF:l........

_recfmV:l........
recfmU:1........

_recfmS:1........
recfmBlk:1......

__recfmASA:1......
recfmM:1........

__recfmPO:1.......
__dsorgPDSmem:1...
__dsorgPDSdir:1...
__dsorgPS:1.......
__dsorgConcat:1...
__dsorgMem:1...... 1
__dsorgHiper:1.... 0
__dsorgTemp:1..... 0

dsorgVSAM:1..... 0

dsorgHFS:1...... 0

__openmode:2...... 1
_ modeflag:4...... 2
__dsorgPDSE:1..... 0
__reserve2:8...... 0
_ device

blksize

__maxreclen
dsname

__reserved

HEALY .MEMORY . DATA

FILE pointer ODEBEA1C

Buffer at current file position: ODEBED40
+000000 ODEBED40 A2969485 408481A3 81A29694
+000020 ODEBED6O 408481A3 81000000 00000000
+000040 ODEBED8O 00000000 00000000 00000000
+000060 ODEBEDAO - +0003FF ODEBF13F

Saved Buffer NULL

85409496 99854084

00000000 00000000

00000000 00000000
same as above

81A38185
00000000
00000000

A5859540
00000000
00000000

94969985
00000000
00000000

some datasome more dataeven more

File Control Block:
+000000 ODEBDO38
+000020 ODEBDO58
+000040 ODEBDO78
+000060 ODEBDO98
+000080 ODEBDOB8
+0000A0 ODEBDOD8
+0000CO ODEBDOF8
+0000EO ODEBD118
+000100 ODEBD138

ODEBDO38
ODEBD234
00000014
FOF2F7F2
ODE7F988
ODEBD208
0000001B
43120020
00000000
00000000

00000000
00000000
FFFFFFFF
0DEB5530
0DEBD234
00000000
28440000
00000000
00000000

00000400
00000000
0000003C
00000000
ODEBD234
00000000
00000000
00000000
00000000

ODEBD108
0DB6701C
ODEBD178
00000404
00000000
00000000
0DB66DDC
00000000
00000000

ODEBD128
ODEBEA30
ODEBD14C
00001800
00000000
ODEO1740
58FFO008
58FF0008
00000000

80000000
ODEBDO38
ODE789B8
ODEBEAOA
00000000
00000000
07FFO000
07FF0000
00000000

ODEBD158
00000000
ODE768F0
00000000
00000000
00000000
ODEO11F8
ODE6F3E8
80000020

00000011
E2E8E2FO
ODE81178
00001801
00000000
00000000
00000000
00000000
ODEBDOOO

Figure 42. Example Dump from Sample C Routine (Part 4 of 6)

154 2z/0S V1R5.0 Language Environment Debugging Guide

fldata FOR FILE:
recfmF:1........

'"HEALY.MYFILE.DATA'
0
_recfmV:l........ 1
_recfmU:1l........ 0
_recfmS:l........ 0
_ recfmBlk:1...... 1
__recfmASA:1...... 0
_recfmM:1........ 0
__recfmPO:1....... 0
__dsorgPDSmem:1... 0
dsorgPDSdir:1... 0
__dsorgPS:1....... 1
dsorgConcat:1... 0
__dsorgMem:1...... 0
__dsorgHiper:1.... 0
_ dsorgTemp:1..... 0
__dsorgVSAM:1..... 0
__dsorgHFS:1...... 0
__openmode:2...... 0
__modeflag:4...... 2
__dsorgPDSE:1..... 0
__reserve2:8...... 0
_device...ouuinnn 0
__blksize.........
__maxreclen.......
dsname..........

__reserved........ 0

ODEBDO24
SYS00272

FILE pointer........
ddname....ooiiiinn.

Buffer at current file position: ODEBD208
+000000 ODEBD208 00280000 000C0000 99858396
+000020 ODEBD228 99858396 998440F3 00040000
+000040 ODEBD248 00000000 00000000 00000000
+000060 ODEBD268 - +0003FF ODEBD607

Saved Buffer........ NULL

Write Data Control
+000000 00052020
+000020 00052040

Block: 00052020

00052E20 00000000 00000008

8605223A 50052DAD 01582424
+000040 00052060 30013030 000OCEA8 01D448F8

read/update DCB..... NULL

Write Data Control Block Extension: 00052E20
+000000 00052E20 CA4C3C2C5 00380000 00052020
+000020 00052E40 00000000 00000000 00000000

read/update DCBE.... NULL

Job File Control Block: 00052E60

+000000 00052E60
+000020 00052E80
+000040 00052EAQ
+000060 00052ECO
+000080 00052EE0
+0000A0 00052F00

C8C5C1D3 E84BD4E8
40404040 40404040
00000200 00000000
00000000 00000000
40404040 40404040
00000000 00000000

C6C9D3C5
40404040
00000000
00000000
40404040
00000000

[8] __amrc_type structure: 00031B18
+000000 00031B18 00000000 00000000
+000020 00031B38 00000000 00000000
+000040 00031B58 - +0000BF 00031BD7
+0000CO 00031BD8 00000000 00000000

00000007
00000000

00000000

998440F1 000C0000

00000000 00000000

00000000 00000000
same as above

0OEFDO8C
0089A044
00D448F8

002FE5A2
12BEE1BO
00000404

00000000
00000000

€0C80000
00000000

4BC4C1E3
40404040
00000000
00000000
40404040
20000100

C1404040
40404040
61004900
00000000
40404040
80000038

00000000 00000000
00000000 00000000
same as above
00000000 00000000

99858396
00000000
00000000

00000001
00C129D8
00D45470

00000000
00000100

40404040
80001F1D
00000040
0001E2D4
0089DDA0O
00052000

00000000
00000000

00000000

998440F2
00000000
00000000

00004000
0A0521B8
47FOF026

00000000
800000B8

40404040
00000000
00000000
E2FOFOF6
00000050
00052F18

00000000
00000000

00000000

000C0000
00000000
00000000

0000CE38
00001800
01C3C5C5

00000000
00052000

40404040
00000000
00000000
40404040
00001800
ODEBD208

00000000
00000000

000000DC

.................. VsSoviir cuiis
foo8oooooa., L I AQ.e.ounn..
y.M.8.M.8 M...00..CEE
DCBE.....covnunn. Hovovvnooooona
HEALY.MYFILE.DATA
...................... SMS006
| ...
.............................. K.

Figure 42. Example Dump from Sample C Routine (Part 5 of 6)

Chapter 4. Debugging C/C++ Routines

155

amrc __code union fields

J) 0 <) P
__abend.__syscode.......
abend.__rc............

_ feedback.rc...........
_ feedback.__ftned......
_ feedback.__fdbk.......
_alloc.__svc99_info....

TRBAL.. ..l 0(0)
last op.eeeneinnn. 7(7)
msg. str......... NULL
__msg.__parmr0...... 0(0)
__msg.__parmrl...... 0(0)
msg. str2........ NULL

__amrc2_type structure: 00031A1C
+000000 00031A1C 00000000 00000000 00000000 0000000 00000000 00000000 00000000 OO0ONOO | . eevnneeerneerrneeeenneeennnnns

Process Control Blocks:

PCB: 00022558

+000000 00022558 C3C5C5D7 C3C24040 03030398 00000000 00000000 60000000 00022788 ODC294C8
+000020 00022578 0DC27A50 ODC2A338 ODC2A810 0DB58928 00021918 00000000 00000000 000228B0O
+000040 00022598 0DC2A470 7C000000 00000000 00000000 00000000 06000000 060000 6OOOOO0O

MEML: 00022788

+000000 00022788 00000000 00000000 ODBBBOB8 00000000 00000000 00000000 ODBBBOB8 00000000
+000020 000227A8 00000000 00000000 ODBBBOBS 00000000 ODB66DDC 00000000 8DC2B6B8 00000000
+000040 000227C8 00000000 00000000 ODBBBOBS 00000000 00000000 00000000 ODBBBOB8 00000000

+000060 000227E8 - +00011F 000228A7 same as above

Additional Language Specific Information:

[91 errno information :

Thread Id 8000000000000000 Errno 00000000 Errnojr 00000000

Figure 42. Example Dump from Sample C Routine (Part 6 of 6)

Finding C/C++ Information in a Language Environment Dump

When a Language Environment traceback or dump is generated for a C/C++
routine, information is provided that is unique to C/C++ routines. C/C++-specific
information includes:

» Control block information for active routines

» Condition information for active routines

* Enclave level data

Each of the unique C/C++ sections of the Language Environment dump are
described.

[1] Storage for Active Routines

The Storage for Active Routines section of the dump shows the DSAs for the active
C and C++ routines. To relate a DSA frame to a particular function name, use the
address associated with the frame to find the corresponding DSA. In this example,
the function funcl DSA address is X'00030440'.

[2] Control Blocks Associated with the Active Thread

In the Control Blocks Associated with the Thread section of the dump, the following
information appears:

* Fields from the CAA

 Fields specific from the CTHD and CEDB

» Signal information

156 z/0S V1R5.0 Language Environment Debugging Guide

[2A] C/C++ CAA Fields

The CAA contains several fields that the C/C++ programmer can use to find
information about the run-time environment. For each C/C++ program, there is a
C-C++ Specific Thread area and a C-C++ Specific Enclave area.

[2B] C-C++ Specific CAA

The C-C++ specific CAA fields that are of interest to users are described below.

errno value
A variable used to display error information. Its value can be set to a
positive number that corresponds to an error message. The functions
perror() and strerror() print the error message that corresponds to the
value of errno.

Memory file control block
You can use the memory file control block (MFCB) to locate additional
information about memory files. This control block resides at the C/C++
thread level. For more information about the MFCB, see (158

Open FCB chain
A pointer to the start of a linked list of open file control blocks (FCBs). For
more information about FCBs, see

[3] Signal Information

When the POSIX(OFF) run-time option is specified, signal information is provided in
the dump to aid you in debugging. For each signal that is disabled with SIG_IGN, an
entry value of 00000001 is made in the first field of the Signal Information field for
the specified signal name.

For each signal that has a handler registered, the signal name and the handler
name are listed. If the handler is a fetched C function, the value @RFECB is entered
as the function name and the address of the fetched pointer is in the first field.

If you compile a C routine as NORENT, the WSA address is not available (N/A). For
more information about the signal function, see|z/0S C/C++ Programming Guidel

[4] WSA Address

The WSA Address is the base address of the writable static area which is available
for all C and C++ programs except C programs compiled with the NORENT compile
option.

[5] atexit() Information
The atexit() information lists the functions registered with the atexit() function
that would be run at normal termination. The functions are listed in chronological

order of registration.

If you compile a C routine as NORENT, the WSA address is not available (N/A). For
more information about the atexit() function, see|z/OS C/C++ Run-Time Library|

[6] fetch() Information

Chapter 4. Debugging C/C++ Routines 157

158

The fetch() information shows information about modules that you have
dynamically loaded using fetch(). For each module that was fetched, the fetch()
pointer and the function pointer are included.

ptrl = fetch("MOD");

If you compile a C routine as NORENT, the WSA address is not available (N/A). For
more information about the fetch() function, see|z/0S C/C++ Programming Guide,

[7] File Control Block Information

This section of the dump includes the file control block (FCB) information for each
C/C++ file. The FCB contains file status and attributes for files open during C/C++
active routines. You can use this information to find the data set or file name.

The FCB is a handle that points to the following file information, which is displayed
when applicable, for the file:

* Access method control block (ACB) address

» Data control block (DCB) address

» Data control block extension (DCBE) address

» Job file control block (JFCB) address

* RPL address

+ Current® buffer address

» Saved buffer address

e ddname

Not all FCB fields are always filled in. For example, RPLs are used only for VSAM
data sets. The ddname field contains blanks if it is not used.

The save block buffer represents auxiliary buffers that are used to save the
contents of the main buffers. Such saving occurs only when a reposition is
performed and there is new data; for example, an incomplete text record or an
incomplete fixed-block standard (FBS) block in the buffers that cannot be flushed
out of the system.

Because the main buffers represent the current position in the file, while the save
buffers merely indicate a save has occurred, check the save buffers only if data
appears to be missing from the external device and is not found in the main buffers.
Also, do not infer that the presence of save buffers means that data present there
belongs at the end of the file. (The buffers remain, even when the data is eventually
written.)

For information about the job file control block, refer to |zZOS MVS Data Areas, Vol 3
(IVT-RCWK)

Memory File Control Block

This section of the dump holds the memory file control block information for each
memory file the routine uses. A sample memory file control block is shown in
[Figure 43 on page 159}

z/OS V1R5.0 Language Environment Debugging Guide

Memory File Control
+000000 046F5CDO
+000020 046F5CFO
+000040 046F5D10
+000060 046F5D30

memory file name.........

Block: 046F5CDO

046F5D40 00000001 00000000 00000000 046F5BA8 00010000 046F5E48 00000013 |.?)even.... 28y ?250eeen
00000014 00000000 00000000 00000000 00000000 046F5BA8 00000000 00000000 |....vvveeeeriueeennn. 28y
046F5CDO 00000000 00000000 00000000 00000000 00000000 00000000 O46F5DA0 | .2%. . ueeeriiieeennnnnennnnn ?)
00010000 00000000 00000000 00000000 00000000 00000000 046F5E68 00000001 |.....vveeeeviineennnnnnns [

TSOID.MEMORY.DATA

First memory data space: 046F5E68
+000000 046F5E68 93899585 40F19389 958540F2 93899585 40F30000 00000000 00000000 00000000 |line 1line 21ine 3.............. |

Figure 43. Memory File Control Block

Memory file name
The name assigned to this memory file.

First memory data space
A dump of the first 1K maximum of actual user data associated with this
memory file.

[8] Information for __amrc

__amrc is a structure defined in the stdio.h header file to assist in determining
errors resulting from 1/O operations. The contents of __amrc can be checked for
system information, such as the return code for VSAM. Certain fields of the __amrc
structure can provide useful information about what occurred previously in your
routine.

For more information about __amrc, refer to[‘Debugging C/C++ Input/Output
[Programs” on page 127and to|zZOS C/C++ Programming Guide,

[9] Errno Information

The Errno information shows the thread id of the thread that generated the dump
and the settings of the errno and errnojr variables for that thread.

Both the errno and the errnojr variables contain the return code of the last failing
z/OS UNIX system service call. These variables provide z/OS UNIX application
programs access to diagnostic information returned from an underlying z/OS UNIX
callable service. For more information on these return and reason codes, refer to
[z/0S UNIX System Services Messages and Codes,

Additional Floating-Point Registers

The Language Environment dump formats Additional Floating Point (AFP™)
registers and Floating Point Control (FPC) registers when the AFP suboption of the
FLOAT C/C++ compiler option is specified and the registers are needed. These
floating-point registers are displayed in three sections of the CEEDUMP; Registers
on Entry to CEESDMP; Parameters, Registers, and Variables; and Condition
Information for Active Routines. Samples of each section are given. For information
on the FLOAT C/C++ compiler option, see [z70S C/C++ User’s Guidg .

Registers on Entry to CEE3DMP: This section of the Language Environment
dump displays the twelve floating-point registers. A sample output is shown.

Chapter 4. Debugging C/C++ Routines 159

CEE3DMP V1 R3.0: Sample dump produced by calling CEE3DMP 08/30/01 5:19:52 PM
CEE3DMP called by program unit ./celdl1.c (entry point dump_n_perc) at statement 34 (offset +0000017A).

Registers on Entry to CEE3DMP:

PM....... 0100

GPRO..... 183F8BE8 GPRI..... 00023D38 GPR2..... 00023E98 GPR3..... 1840E792
GPR4..... 00023D98 GPR5..... 183F8CDO GPR6..... 00023D48 GPR7..... 0002297F
GPR8..... 17F4553D GPRI..... 183F6870 GPR10.... 17F4353F GPRI11.... 17FA0550
GPR1Z.... 00015920 GPR13.... 00023CAO GPR14.... 800180E2 GPR15.... 97F57FE8
FPC...... 40084000

FPRO..... 40260000 00000000 FPRI..... 41086A00 00000000

FPRZ..... 00000000 00000000 FPR3..... 3F8CACO8 3126E979

FPR4..... 3FF33333 33333333 FPR5..... 40C19400 00000000

FPR6..... 3F661EAF 765FD8AE FPR7..... 3FFO6666 66666666

FPRS..... 3FF33333 33333333 FPRI..... 00000000 00000000

FPR10.... 3FF33333 33333333 FPR11.... 00000000 00000000

FPR12.... 40260000 00000000 FPRI3.... 00000000 00000000

FPR14.... 40220000 00000000 FPR15.... 00000000 00000000

Figure 44. Registers on Entry to CEE3DMP

Parameters, Registers, and Variables for Active Routines: This section of the
Language Environment dump displays the non-volatile floating-point registers that
are saved in the stack frame. The registers are only displayed if the program
owning the stack frame saved them. Dashes are displayed in the registers when the
register values are not saved. A sample output is shown.

Parameters, Registers, and Variables for Active Routines:

goo (DSA address 000213B0):
Saved Registers:

GPRO..... 183F6CCO GPRI..... 00021278 GPR2..... 183F6870 GPR3..... 17F01DC2
GPR4..... 000000F8 GPR5..... 183F6968 GPR6..... 17F02408 GPR7..... 000212EC
GPR8..... 000212F0 GPRI..... 80000000 GPR10.... 98125022 GPR11.... 80007F98
GPR1Z2.... 00015920 GPR13.... 000213BO GPR14.... 97FO1EIE GPR15.... 0000002F
FPR8..... 3FF33333 33333333 FPRO. ..t === oo
FPR10O.... 3FF33333 33333333 FPRIT.... =====mom mmmeeeee
FPR12.... 40260000 00000000 FPRI3.... ===mmmmm —mmmmeee
FPR14.... 40220000 00000000 FPRI5. ... === oo

GPREG STORAGE:
Storage around GPRO (183F6CCO)

Figure 45. Parameters, Registers, and Variables for Active Routines

Condition Information for Active Routines: This section of the Language
Environment dump displays the floating-point registers when they are saved in the
machine state. A sample output is shown.

160 z/0OS V1R5.0 Language Environment Debugging Guide

Condition Information for Active Routines
Condition Information for ./celsamp.c (DSA address 000213B0)

CIB Address: 00021F90

Current Condition:

CEE3224S The system detected an IEEE division-by-zero exception.

Location:

Program Unit: ./celsamp.c

Program Unit:Entry:

Machine State:
0004

183F6CCO
000000F8
000212F0
. 00015920
40084000
40260000
00000000
. 3FF33333
. 3F661E4F
3FF33333
. 3FF33333
. 40260000
FPR14.... 40220000

Interruption Code
078D0400 97FO1E46

goo Statement: 78 Offset: +000000BA

GPRI..... 00021278
183F6968
GPRI..... 80000000
GPR13.... 000213B0O

00000000
00000000
33333333
765FD8AE
33333333
33333333
00000000
00000000

0007

GPR2..... 183F6870
GPR6..... 17F02408
GPR10.... 98125022
GPR14.... 97FO1E1E
FPRI..... 41086A00
FPR3..... 3F8CACO8
FPR5..... 40C19400
FPR7..... 3FF06666
FPRI..... 00000000
FPRI1.... 00000000

FPR13.... 00000000
FPR15.... 00000000

Storage dump near condition, beginning at location: 17FO1E32

. 000000 17FO1E32 68201008 5810DOFO 68401010 B31B0024 B31D000Z B3050000 5820D0F4 584031C2

GPR3..... 17F01DC2
GPR7..... 000212EC
GPR11.... 80007F98

GPR15.... 0000002F

00000000
3126E979
00000000
66666666
00000000
00000000
00000000
00000000

[eeereen [4. .B|

Figure 46. Condition Information for Active Routines

Sample Language Environment Dump with XPLINK-Specific

Information

The programs tranmain shown in [Figure 47 on page 162/ and trand11 shown in

[Figure 48 on page 163|were used to produce a Language Environment dump. The

dump shows XPLINK-compiled routines calling NOXPLINK-compiled routines, and

NOXPLINK-compiled routines calling XPLINK-compiled routines. The program

tranmain was compiled XPLINK and trand11 was compiled NOXPLINK. Each was

link-edited as a separate program object with the sidedeck from the other. The
Language Environment dump produced by running these program is shown in

Figure 49 on page 164} Explanations for some of the sections are in|“Findina

XPLINK Information in a Language Environment Dump” on page 166

Chapter 4. Debugging C/C++ Routines

161

#pragma runopts(TRACE(ON,1M,NODUMP,LE=1) ,XPLINK(ON), TERMTHDACT (UADUMP))
#include <stdio.h>
#pragma export(tran2)

int tranl(int, int, int, long double, int);
int tran3(int, int, int, long double, int);

void main(void) {

int parml = 0x11111111;
int parm2 = 0x22222222;
int parm3 = 0x33333333;
long double parm4 = 1234.56789;
int parm5 = 0x55555555;
int retval;

printf("Main: Call Tranl\n");
retval = tranl(parml,parm2,parm3,parmé,parms);
printf("Main: Return value from Tranl = %d\n",retval);

}

int tran2(int parml,int parm2,int parm3,long double parm4,int parmb) {
int retval;

printf("Tran2: Call Tran3\n");

retval = tran3(parml,parm2,parm3,parm4,parms);
printf("Tran2: Return value from Tran3 = %d\n",retval);
return retval;

Figure 47. Sample XPLINK-compiled Program (tranmain) Which Calls a NOXPLINK-compiled
Program

162 2z/0S V1R5.0 Language Environment Debugging Guide

#include <stdio.h>
#include <ctest.h>
#include <leawi.h>
#pragma export(tranl)
#pragma export(tran3)

int tran2(int, int, int, long double, int);
int tranl(int parml,int parm2,int parm3,long double parm4,int parmb) {
int retval;

printf("Tranl: Call Tran2\n");

retval = tran2(parml,parm2,parm3,parmé,parms);

printf("Tranl: Return value from Tran2 = %d\n",retval);
return retval;

}

int tran3(int parml,int parm2,int parm3,long double parm4,int parm5) {
_INT4 code, timing;

code = 1001; /* Abend code to issue */

timing = 1;

printf("Tran3: About to ABEND\n");

CEE3ABD (&code,&timing);

return parml + parm2 + parm3;

Figure 48. Sample NOXPLINK-compiled Program (trandll) Which Calls an XPLINK-compiled
Program

Chapter 4. Debugging C/C++ Routines 163

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 3:59:07 PM Page: 1
Information for enclave main
Information for thread 8000000000000000

[1] Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
23ED4C18 CEEHDSPR 23BA6538 +000038DA CEEHDSPR 23BA6538 +000038DA CEEPLPKA Call
23ED4998 CEEHABD 23AD34A0 +0000012A CEEHABD 23AD34A0 +0000012A CEEPLPKA Exception
23ED4BEO ./trand11.c 240848C0 +000000D6 tran3 240848C0 +000000D6 26 XNTDLL Call
23ED4730 CEEVRONU 23BB0470 +00000706 CEEVRONU 23BB0470 +00000706 CEEPLPKA Call
24077530 ./tranmain.c 23A00QE8 +00000070 tran2 23A000E8 +00000070 27 XNTRAN Call
240775B0 23BAEE38 +000009A4 CEEVROND 23BAEE90 +0000094C CEEPLPKA Call
23ED44E8 ./trand1l.c 24084A40 +000000F2 tranl 24084A40 +000000F2 14 XNTDLL Call
23ED4338 CEEVRONU 23BB0470 +00000706 CEEVRONU 23BB0470 +00000706 CEEPLPKA Call
24077680 ./tranmain.c 23A00218 +0000008C main 23A00218 +0000008C 18 XNTRAN Call
24077720 23BAEE38 +000009A4 CEEVROND 23BAEE90 +0000094C CEEPLPKA Call
23ED4OEO EDCZHINV 23EBEC28 +0000009A EDCZHINV 23EBEC28 +0000009A CELHV003 Call
23ED4018 CEEBBEXT 000082A8 +000001A6 CEEBBEXT 000082A8 +000001A6 CEEBINIT Call

Condition Information for Active Routines
Condition Information for CEEHABD (DSA address 23ED4998)
CIB Address: 23ED5438
Current Condition:
CEE0198S The termination of a thread was signaled due to an unhandled condition.
Original Condition:
CEE3250C The system or user abend U1001 R=00000000 was issued.
Location:
Program Unit: CEEHABD Entry: CEEHABD Statement: Offset: +0000012A
Machine State:

ILC..... 0002 Interruption Code..... 000D

PSW..... 07801400 A3AD35CA

GPRO..... 84000000 GPR1..... 840003E9 GPR2..... 23ED4984 GPR3..... 240848FA
GPR4..... 23ED4980 GPR5..... 000159D0 GPR6..... 00000000 GPR7..... 00000000
GPR8..... A3ADOOF2 GPRI..... 23A1BEBO GPR10.... 23ED4980 GPR11.... A3AD34A0

GPR12.... 00016ACO GPR13.... 23ED4998 GPR14.... A4084998 GPR15.... 00000000
ABEND code: 000003E9 Reason code: 00000000
Storage dump near condition, beginning at location: 23AD35BA
+000000 23AD35BA 88100008 41000084 89000018 16100A0D 47FOB1B6 5840C2FO 95064008 4770B1A0 |h...... (¢} I 0... BOn.

[2] Parameters, Registers, and Variables for Active Routines:

tran3 (DSA address 23ED48EQ):
UPSTACK DSA

Parameters:
parm5 signed int 1431655765
parmé long double 1.234567889999999977135303197E+03
parm3 signed int 858993459
parm2 signed int 572662306
parml signed int 286331153
Saved Registers:
GPRO..... 23A1BD70 GPRI1..... 23ED4978 GPR2..... 23ED4984 GPR3..... 240848FA
GPR4..... 23ED4980 GPR5..... 23A1BE10 GPR6..... 00000000 GPR7..... 00000000
GPR8..... A3A000F2 GPRI..... 23A1BEBO GPR10.... 240848C0 GPR11.... A3BBO4FA

GPR12.... 00016ACO GPR13.... 23ED48EO GPR14.... A4084998 GPR15.... A3AD34A0

Local Variables:
timing signed Tong int 1
code signed Tong int 1001

Figure 49. Example Dump of Calling Between XPLINK and non-XPLINK Programs (Part 1 of 3)

164 z/0S V1R5.0 Language Environment Debugging Guide

CEEVRONU (DSA address 23ED4730):

TRANSITION DSA
Saved Registers:

GPRO..... 23A1BD70
GPR4..... 24077530
GPR8..... A3A000F2

GPRI12.... 00016ACO

tran2 (DSA address 24077530):

DOWNSTACK DSA

Parameters:
parm5 signed int
parmé Tong double
parm3 signed int
parm2 signed int
parml signed int
Saved Registers:
GPRO..... 55555555 GPRI1.....
GPR4..... 24077530 GPR5.....
GPRS8..... A3AGOOF2 GPRI.....
GPR12.... 00016ACO GPR13
Local Variables:
retval signed int

CEEVROND (DSA address 240775B0):

TRANSITION DSA
Saved Registers:

GPRO..... ok dk ok ko
GPR4..... 240775B0
GPRS8..... 23A000B8
GPR12

. kkkkkKKk

tranl (DSA address 23ED44E8):

UPSTACK DSA

Saved Registers:

GPRO..... 23FF5098
GPR4..... 33333333
GPR8..... A3A00222

GPR12.... 00016ACO

24077D70 GPR2..... 23ED4818
23FF58D0 GPR6..... 00000000
23A1BE8BO GPR10O.... 240848C0
. 23ED4730 GPR14.... A3BBOB78
1431655765
1.234567889999999977135303197E+03
858993459
572662306
286331153
11111111 GPR2..... 22222222
23FF58D0 GPR6..... 23BB04D8
23A1BE8BO GPR10.... 23A000B8
. 23ED45BO GPR14.... 23A000B8
-155613482
*xxxxkx% GPR2..... KkkkhhhKk
23A1BE8BO GPR6..... 23A000E8
23BAFE37 GPR10O.... #xwkkoksks
. kxxxkxkx GPR14 . REERRKKKK
23ED4580 GPR2..... 55555555
23A1BE1O GPR6..... 22222222
23A00320 GPR10O.... 24084A40
. 23EDA4E8 GPR14.... A4084B34

00000010
00000000

.. A3BBO4FA
. 240848C0

33333333
A3AQO15A

.. 23BAEE38
. 0000000C

KkkkkhhKk

A3BAF7DE

L kkkkkkkk
. RERERKKKK

24084A7A
11111111

.. A3BBO4FA
. 23BAEE38

Figure 49. Example Dump of Calling Between XPLINK and non-XPLINK Programs (Part 2 of 3)

Chapter 4. Debugging C/C++ Routines

165

[3] Control Blocks for Active Routines:

DSA for tran3: 23ED48E0

+000000 FLAGS.... 10A0 member. .. 1D8C BKC...... 23ED4730 FWC...... 23ED4998 R14...... A4084998
+000010 R15...... A3AD34A0 RO....... 23A1BD70 Rl....... 23ED4978 R2....... 23ED4984 R3....... 240848FA
+000024 R4....... 23ED4980 R5....... 23A1BE1O R6....... 00000000 R7....... 00000000 R8....... A3A000F2
+000038 R9....... 23A1BE8O R10...... 240848C0 R1l...... A3BBO4FA RI12...... 00016ACO reserved. 00017630
+00004C NAB...... 23ED4998 PNAB..... 00000000 reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 23A00000 MODE..... 23A01438 reserved. 80000000 00000000

+000078 reserved. 23A001DO reserved. 23A00480
DSA for CEEVRONU: 23ED4730

+000000 FLAGS.... 0000 member... 0000 BKC...... FFFFFFFF FWC...... E3D9CID5 R14...... A3BBOB78
+000010 R15...... 240848C0 RO....... 23A1BD70 RI....... 24077D70 R2....... 23ED4818 R3....... 00000010
+000024 R4....... 24077530 R5....... 23FF58D0 R6....... 00000000 R7....... 00000000 R8....... A3A000F2
+000038 R9....... 23A1BE8SO R10...... 240848C0 RI11...... A3BBO4FA RI12...... 00016ACO reserved. 00017630
+00004C NAB...... 23EDABEO PNAB..... 23EDABEO reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 23ED47BO reserved. 00000000 MODE..... 00000000 reserved. 00000000 00000000

+000078 reserved. 00000000 reserved. 00000000

DSA for CEEVRONU: 23ED47BO
+000000 EYE...... DOWNTOUP TRTYPE... 00000003 BOS...... 00000000 STACKFLR. 00000000 SSTOPD... 24077680
+000018 SSDSAU... 23ED4730 TRANEP... 23BB0470 TR_R@.... 55555555 TR_Rl.... 11111111 TR_R2.... 22222222
+00002C TR_R3.... 33333333 TR R4.... 24077530 TR_R5.... 23FF58D0 TR_R6.... 23BB04D8 TR_R7.... A3A0015A
+000040 TR_R8.... A3AQOOF2 TR _R9.... 23A1BE8® TR_R10... 23A000B8 TR_R11l... 23BAEE38 TR_R12... 00016ACO
+000054 TR_R13... 23ED45BO TR_R14... 23A000B8 TR_R15... 0000000C CRENT.... 00000000 ROND_DSA. 23ED45BO
+000068 INTF_MAP. 018F1000

DSA for tran2: 24077D30

+000000 R4....... 240775B0 R5....... 23A1BESO R6....... 23A000E8 R7....... A3BAF7DE R8....... 23A000B8
+000014 R9....... 23BAFE37 RI10O...... 23A000B8 RII...... 23BAEE38 RI2...... 00016ACO RI3...... 23EDA5B0
+000028 R14...... 23A000B8 R15...... 0000000C reserved. 00000A68 reserved. 23BFB78B HPTRAN... 00000000

+00003C reserved. 55555555 reserved. 11111111
DSA for CEEVROND: 24077DBO

+000000 R4....... E3D9CID5 R5....... 00000000 R6....... 23BAEE90 R7....... 00000000 R8....... 23ED4860
+000014 R9....... 00000000 R10...... 00000000 RI11...... A3B6931C RI2...... 00000000 R13...... 00000000
+000028 R14...... 24077E10 R15...... 00000000 reserved. 23A1BEIC reserved. 23ED45A8 HPTRAN... 24077E10

+00003C reserved. FFFFFFFF reserved. 11111111

DSA for CEEVROND: 24077E10
+000000 EYE...... UPTODOWN TRTYPE... 00000002 BOS...... 00000000 STACKFLR. 00000000 SSTOPD... 24077680
+000018 SSDSAU... 23ED4338 TRANEP... 23BAEE9® TR_RO.... 00000000 TR_R1.... 00000000 TR_R2.... 00000000
+00002C TR_R3.... 00000000 TR _R4.... 23ED44E8 TR_R5.... 00000000 TR_R6.... 00000000 TR_R7.... A4084B34
+000040 TR_R8.... 00000000 TR_R9.... 00000000 TR_R10... 00000000 TR_R11l... 00000000 TR_R12... 00000000
+000054 TR_R13... 00000000 TR _R14... 00000000 TR_R15... 00000000 CRENT.... 23BAEE38 ROND_DSA. 00000000
+000068 INTF_MAP. 00000000

DSA for tranl: 23ED44E8

+000000 FLAGS.... 1000 member... 59D0 BKC...... 23ED4338 FWC...... 23ED4860 R14...... A4084B34
+000010 R15...... 23BAEE38 RO....... 23FF5098 RI....... 23ED4580 R2....... 55555555 R3....... 24084A7A
+000024 R4....... 33333333 R5....... 23A1BE10 R6....... 22222222 R7....... 11111111 R8....... A3A00222
+000038 R9....... 23A00320 RI10...... 24084A40 RI1l...... A3BBO4FA RIZ2...... 00016ACO reserved. 00017630
+00004C NAB...... 23ED45BO PNAB..... A3B9104C reserved. 23ED4408 00000001 23A01CFO 0000000C
+000064 reserved. 00000000 reserved. 23A01D38 MODE..... 00100028 reserved. 00000000 00000000

+000078 reserved. 23A01BBO reserved. A3B90OCF8

Figure 49. Example Dump of Calling Between XPLINK and non-XPLINK Programs (Part 3 of 3)

Finding XPLINK Information in a Language Environment Dump
[1] Traceback

When an XPLINK-compiled routine calls a NOXPLINK-compiled routine, a glue
routine gets control to convert the linkage conventions of the XPLINK caller to those
of the NOXPLINK callee. In the sample dump, this routine is CEEVRONU and it
appears between main() and tran1() and again between tran2() and tran3().

When a NOXPLINK-compiled routine calls an XPLINK-compiled routine, a glue
routine gets control to convert the linkage conventions of the NOXPLINK caller to
those of the XPLINK callee. In the sample dump, this routine is CEEVROND and it
appears between EDCZHINV and main() and again between tranl() and tran2().

[2] Parameters, Registers, and Variables for Active Routines

166 z/0OS V1R5.0 Language Environment Debugging Guide

In this section, each DSA is identified as one of the following:

UPSTACK DSA
The DSA format is that for a NOXPLINK-compiled program that uses an
upward growing stack.

DOWNSTACK DSA
The DSA format is that for ax XPLINK-compiled program that uses an
downward growing stack.

TRANSITION DSA
The DSA format is that of its callee. A transition DSA can occur between an
UPSTACK DSA and a DOWNSTACK DSA where it represents a transition
from one linkage convention to another. A transition DSA can also occur
between two DOWNSTACK DSAs where it represents a transition from one
stack segment to another (a stack overflow).

[3] Control Blocks for Active Routines

In this section, DSAs are formatted. Those previously identified as UPSTACK DSAs
will have one format and those identified as DOWNSTACK DSAs will have a
different format. Those identified as TRANSITION DSAs will have two parts — the
first will be either the downstack or upstack format, the second is unique to
transition DSAs and contains information about the transition.

It is important to understand that the registers saved in an upstack DSA are those
saved by a routine that the DSA-owning routine called. Typically register 15 is the
entry point of the routine that was called, and register 14 is the return address into
the DSA-owning routine. In contrast, the registers saved in an upstack DSA are
those saved by the DSA-owning routine on entry. Register 7 is the return address
back to the caller of the DSA-owning routine. Register 6 may be the entry point of
the DSA-owning routine. (This is not true when the Branch Relative and Save
instruction is used to implement the call.)

C/C++ Contents of the Language Environment Trace Tables

Language Environment provides four C/C++ trace table entry types that contain

character data:

» Trace entry 1 occurs when a base C library function is called.

» Trace entry 2 occurs when a base C library function returns.

» Trace entry 3 occurs when a POSIX C library function is called.

» Trace entry 4 occurs when a POSIX C library function returns.

» Trace entry 5 occurs when an XPLINK base C or POSIX C library function is
called.

» Trace entry 6 occurs when an XPLINK base C or POSIX C library function
returns.

The format for trace table entry 1 is:
NameOfCallingFunction
—>(xxx) NameOfCalledFunction

or, for called functions calloc, free, malloc, and realloc:
NameOfCalTlingFunction

—>(xxx) NameOfCalledFunction<(input_parameters)>

In addition, when the call is due to one of these C++ operators:

Chapter 4. Debugging C/C++ Routines 167

168

-new,
-new[],
-delete,
-delete[]

then the C++ operator will appear and the format becomes:
NameOfCallingFunction
—>(xxx) NameOfCalledFunction<(input_parameters)>

NameOfC++Operator

The format for trace table entry 2 is:
<—(xxx) R15=value ERRNO=value

The format for trace table entry 3 is:

NameOfCallingFunction
—>(xxx) NameOfCalledFunction

The format for trace table entry 4 is:
<—(xxx) R15=value ERRNO=value ERRNO2=value

The format for trace table entry 5 is:

NameOfCallingFunction
-->(xxxx) NameOfCalledFunction<(input_parameters)>

Trace table entry 5 is just like trace table entry 1. The input_parameters and
NameOfC++Operator only appear for the appropriate functions. The angle brackets
(<>) indicate that this information does not always appear.

The format for trace table entry 6 is:

<==(xxxx) RI=xxxxxxxx R2=xxxxxxxx R3=xxxxxxxx ERRNO=xxxxxxxx ERRNO2=XXXXXXXX

In all six entry types, (xxx) and (xxxx) are numbers associated with the called
library function and are used to associate a specific entry record with its
corresponding return record.

For entry types 5 and 6, the number will be the same as the number of the function
as seen in the C run-time library definition side-deck, SCEELIB dataset member
CELHSO003, on the IMPORT statement for that function.

[Figure 50 on page 169|shows a non-XPLINK trace which has examples of C/C++
trace table entry types 1 thru 4.

|Figure 51 on page 171|shows an XPLINK trace which has examples of the trace
entries 5 and 6.

z/OS V1R5.0 Language Environment Debugging Guide

Language Environment Trace Table:

Most recent trace entry is at displacement: 02D500

Displacement

Trace Entry in Hexadecimal

+000000
+000010
+000018
+000038
+000058
+000078

+000080
+000090
+000098
+0000B8
+0000D8
+0000F8

+000100
+000110
+000118
+000138
+000158
+000178

+000180
+000190
+000198
+0001B8
+0001D8
+0001F8

+000200
+000210
+000218
+000238
+000258
+000278

+000280
+000290
+000298
+0002B8
+0002D8
+0002F8

+000300
+000310
+000318
+000338
+000358
+000378

+000380
+000390
+000398
+0003B8
+0003D8
+0003F8

+000400
+000410
+000418
+000438
+000458
+000478

Time 20.52.46.666280 Date 2001.08.26
Member ID.... 03 Flags..... 000000
94818995 40404040 40404040 40404040 40404040 40404040
60606E4D F1F3F95D 40A2A399 8397A84D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.52.46.666286 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F3F95D 40D9F1F5 7EF2F4C2 F7F3F1C4 F840C5D9
FOFOFOFO 00000000 00000000 00000000 00000000 00000000
00000000 0OOOOOOO OO0 00000000 00000000 OOOOOOOO
00000000 00000000

Time 20.52.46.666289 Date 2001.08.26
Member ID.... 03 Flags..... 000000
94818995 40404040 40404040 40404040 40404040 40404040
60606E4D F1F3F95D 40A2A399 8397A84D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.52.46.666293 Date 2001.08.26
Member ID.... 03 g 000000
4C60604D F1F3F95D 40D9F1F5 7EF2FAC2 F7F3F2F2 F840C5D9
FOFOFOFO 00000000 00000000 0OOOOEEO 00O 00O
00000000 000OOOOO OO0 00000000 00000000 0OOOOOOO
00000000 00000000

Time 20.52.46.666303 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C98785A3 97819994 A2404040 40404040 40404040 40404040
60606E4D FOF5F25D 4089A281 A3A3A84D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
00000000 00000000

Time 20.52.46.673289 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D FOF5F25D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOF7F1 40C5D9D9 D5D6F27E FOF5C6C3 FOF1F1C3 00000000
00000000 00000000 00000000 00000000 00000000 OOOOOOOO
00000000 00000000

Time 20.52.46.673296 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C98785A3 97819994 A2404040 40404040 40404040 40404040
60606E4D FOF5F25D 4089A281 A3A3A84D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
00000000 00000000

Time 20.52.46.673334 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D FOF5F25D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOF7F1 40C5D9D9 D5D6F27E FOF5C6C3 FOF1F1C3 00000000
00000000 0OOOOOOO OO0 00000000 00000000 COOOEOOO
00000000 00OOOOOO

Time 20.52.46.673338 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C98785A3 97819994 A2404040 40404040 40404040 40404040
60606E4D FOF5F25D 4089A281 A3A3A84D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
00000000 00000000

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000003
40404040 40404040
40404040 40404040
40000000 00000000

8000000000000000
. 00000004
D9D5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000003
40404040 40404040
40404040 40404040
40000000 00000000

8000000000000000
. 00000004
D9D5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000003
40404040 40404040
40404040 40404040
40000000 00000000

Trace Entry in EBCDIC

main

-->(139) strcpy()

R15=24B731D8 ERRNO=0000

strepy()

R15=24B73228 ERRNO=0000

Igetparms
-->(052) isatty()

<--(052) R15=00000000 ERRNO=0000
0071 ERRNO2=05FCO11C............

Igetparms
-->(052) isatty()

<--(052) R15=00000000 ERRNO=0000
0071 ERRNO2=05FCO11C............

Igetparms
-->(052) isatty()

Figure 50. Trace Table with C/C++ Trace Table Entry Types 1 thru 4 (Part 1 of 2)

Chapter 4. Debugging C/C++ Routines

169

+000480
+000490
+000498
+0004B8
+0004D8
+0004F8

+000500
+000510
+000518
+000538
+000558
+000578

+000580
+000590
+000598
+0005B8
+0005D8
+0005F8

+000600
+000610
+000618
+000638
+000658
+000678

+000680
+000690
+000698
+0006B8
+0006D8
+0006F8

+000700
+000710
+000718
+000738
+000758
+000778

+000780
+000790
+000798
+0007B8
+0007D8
+0007F8

Time 20.52.46.673373 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D FOF5F25D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOF7F1 40C5D9D9 D5D6F27E FOF5C6C3 FOF1F1C3 00000000
00000000 00000000 OO0 00000000 00000000 0OOOOOOO
00000000 00000000

Time 20.52.46.673379 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C98785A3 97819994 A2404040 40404040 40404040 40404040
60606E4D F1F2F95D 408785A3 8595A54D 5D404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.52.46.673392 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F2F95D 40D9F1F5 7EFOFOFO FOFOFOFO FO40C5D9
FOFOF7F1 00000000 00000000 00000000 00000000 00000000
00000000 0OOOOOOO 0OOOOOOO 00000000 00000000 OOOOOOOO
00000000 00000000

Time 20.52.46.673401 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C9A285A3 A4974040 40404040 40404040 40404040 40404040
60606E4D F1F9F15D 408685A3 83884D5D 40404040 40404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.52.47.553343 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F9F15D 40D9F1F5 7EF2F4C2 F7F6FOF6 FO40C5D9
FOFOF7F1 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00OOOOOO 00000000 00000000 6OOOOOOO
00000000 00000000

Time 20.52.47.553355 Date 2001.08.26
Member ID.... 03 Flags..... 000000
C9A285A3 A4974040 40404040 40404040 40404040 40404040
60606E4D F1F2F45D 40948193 9396834D F2FOF6F8 5D404040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 20.52.47.553366 Date 2001.08.26
Member ID.... 03 Flags..... 000000
4C60604D F1F2F45D 40D9F1F5 7EF2F4C2 F7F6F2F3 FO40C5D9
FOFOF7F1 00000000 00000000 00000000 00000000 00000000
00000000 00000000 0OOOOOOO 00000000 00000000 COOOOOOO
00000000 00000000

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

8000000000000000
. 00000004
D9D5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
D9D5D67E FOFOFOFO
00000000 00000000
00000000 00000000

8000000000000000
. 00000001
40404040 40404040
40404040 40404040
40404040 40404040

8000000000000000
. 00000002
DID5D67E FOFOFOFO
00000000 00000000
00000000 00000000

<--(052) R15=00000000 ERRNO=0000
0071 ERRNO2=05FCO11C............

Igetparms
-->(129) getenv()

<--(129) R15=00000000 ERRNO=0000

Isetup
-->(191) fetch()

<--(191) R15=24B76060 ERRNO=0000

Isetup
-->(124) malloc(2068)

<--(124) R15=24B76230 ERRN0=0000

Figure 50. Trace Table with C/C++ Trace Table Entry Types 1 thru 4 (Part 2 of 2)

170

[Figure 51 on page 171|shows an XPLINK trace which has examples of the trace

entries 5 and 6.

z/OS V1R5.0 Language Environment Debugging Guide

Language Environment Trace Table:

Most recent trace entry is at displacement: 000D80

Displacement

Trace Entry in Hexadecimal

+000000
+000010
+000018
+000038
+000058
+000078

+000080
+000090
+000098
+0000B8
+0000D8
+0000F8

+000100
+000110
+000118
+000138
+000158
+000178

+000180
+000190
+000198
+0001B8
+0001D8
+0001F8

+000200
+000210
+000218
+000238
+000258
+000278

+000280
+000290
+000298
+0002B8
+0002D8
+0002F8

+000300
+000310
+000318
+000338
+000358
+000378

+000380
+000390
+000398
+0003B8
+0003D8
+0003F8

+000400
+000410
+000418
+000438
+000458
+000478

Time 22.41.35.433944 Date 2001.08.30
Member ID.... 03 Flags..... 000000
4C60604D FOFOF5F9 5D40D9F1 7EF2F3C6 C6C3C1C2 FO4ODIF2
FO40D9F3 7EF2F3C6 C6CAFOFO FO40C5D9 DID5D67E FOFOFOFO
D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000
00000000 00000000

Time 22.41.35.433948 Date 2001.08.30
Member ID.... 03 Flags..... 000000
C9D9E3D3 DI985A296 A4998385 7A7AAIC9 DIE3D3D9 85A296A4
60606E4D FOF2FOF4 5D4097A3 88998581 846D94A4 A385A76D
5D404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 22.41.35.433952 Date 2001.08.30
Member ID.... 03 Flags..... 000000
4C60604D FOF2FOF4 5D40D9F1 7EF2F3C6 C6C3CLF3 C340D9F2
FO40D9F3 7EFOFOFO FOFOFOFO FO40C5D9 DID5D67E FOFOFOFO
D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000
00000000 00000000

Time 22.41.35.433957 Date 2001.08.30
Member ID.... 03 g 000000
C9D9E3D3 DI985A296 A4998385 7A7AA1C9 DIE3D3D9 85A296A4
60606E4D FOFOF5F9 5D408699 85854DF0 A7F2F4FO FOF4C3F2
40404040 40404040 40404040 40404040 40404040 40404040
84859385 A3854040

Time 22.41.35.433959 Date 2001.08.30
Member ID.... 03 Flags..... 000000
4C60604D FOFOF5F9 5D40D9F1 7EF2F3C6 C6C3C1C2 FO4ODIF2
FO40D9F3 7EF2F3C6 C6CAFOFO FO40C5D9 DID5D67E FOFOFOFO
D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000
00000000 00000000

Time 22.41.35.433963 Date 2001.08.30
Member ID.... 03 Flags..... 000000
C9D9E3D3 DI985A296 A4998385 7A7AA1C9 DIE3D3D9 85A296A4
60606E4D FOF2FOF4 5D4097A3 88998581 846D94A4 A385A76D
5D404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040

Time 22.41.35.433967 Date 2001.08.30
Member ID.... 03 Flags..... 000000
4C60604D FOF2FOF4 5D40D9F1 7EF2F3C6 C6C3C1F3 C340D9F2
FO40D9F3 7EFOFOFO FOFOFOFO FO40C5D9 DID5D67E FOFOFOFO
D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000
00000000 00000000

Time 22.41.35.433972 Date 2001.08.30
Member ID.... 03 Flags..... 000000
C9D9E3D3 DI985A296 A4998385 7A7AAIC9 DIE3D3D9 85A296A4
60606E4D FOFOF5F9 5D408699 85854DF0 A7F2F4F0 FOF4C3F3
40404040 40404040 40404040 40404040 40404040 40404040
84859385 A3854040

Time 22.41.35.433974 Date 2001.08.30
Member ID.... 03 Flags..... 000000
4C60604D FOFOF5F9 5D40D9F1 7EF2F3C6 C6C3C1C2 FO4ODIF2
FO40D9F3 7EF2F3C6 C6CAFOFO FO40C5D9 DID5D67E FOFOFOFO
D5D6F27E FOFOFOFO FOFOFOFO 00000000 00000000 00000000
00000000 00000000

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

Thread ID...
Entry Type....

26C70D0000000000
. 00000006
7EF2F3C3 F5F8F9C4
FOFOF7F4 40C5D9D9
00000000 00000000

26C70D0000000000
. 00000005
9983854D 5D404040
8485A2A3 9996A84D
40404040 40404040

26C70D0000000000
. 00000006
7EF2F3C3 F5F8F9C4
FOFOF7F4 40C5D9D9
00000000 00000000

26C70D0000000000
. 00000005
9983854D 50404040
FO5D4040 40404040
40404040 40404040

26C70D0000000000
. 00000006
7EF2F3C3 F5F8F9C4
FOFOF7F4 40C5D9D9
00000000 00000000

26C70D0000000000
. 00000005
9983854D 5D404040
8485A2A3 9996A84D
40404040 40404040

26C70D0000000000
. 00000006
7EF2F3C3 F5F8F9C4
FOFOF7F4 40C5D9D9
00000000 00000000

26C70D0000000000
. 00000005
9983854D 5D404040
F85D4040 40404040
40404040 40404040

26C70D0000000000
. 00000006
7EF2F3C3 F5F8F9C4
FOFOF7F4 40C5D9D9
00000000 00000000

Trace Entry in EBCDIC

<--(0059) R1=23FFCAB® R2=23C589D
0 R3=23FFDO0O ERRNO=00000074 ERR
NO2=00000000. ...cvvvviinnnnnnn

IRTLResource: : . IRTLResource()
-->(0204) pthread_mutex_destroy(
)

<--(0204) R1=23FFCA3C R2=23C589D
0 R3=00000000 ERRNO=00000074 ERR
NO2=00000000.cvverrurennnnn.

IRTLResource::.IRTLResource()
-->(0059) free(0x24004C20)

delete

<--(0059) R1=23FFCABO R2=23C589D
0 R3=23FFDO00 ERRNO=00000074 ERR
NO2=00000000.....cvvvrreerennnn.

IRTLResource::.IRTLResource()
-->(0204) pthread_mutex_destroy(
)

<--(0204) R1=23FFCA3C R2=23C589D
0 R3=00000000 ERRNO=00000074 ERR
NO2=00000000.cvvvnnnnnnnn.

IRTLResource::.IRTLResource()
-->(0059) free(0x24004C38)

delete

<--(0059) R1=23FFCABO R2=23C589D
0 R3=23FFDO0O ERRNO=00000074 ERR
NO2=00000000.....cvveerurrennnn.

Figure 51. Trace Table with XPLINK Trace Table Entries 5 and 6.

For more information about the Language Environment trace table format, see

[‘Understanding the trace table entry (TTE)” on page 118/

Chapter 4. Debugging C/C++ Routines

171

Debugging Examples of C/C++ Routines

This section contains examples that demonstrate the debugging process for C/C++
routines. Important areas of the output are highlighted. Data unnecessary to the
debugging examples has been replaced by ellipses.

Divide-by-Zero Error

172

illustrates a C program that contains a divide-by-zero error. The code was
compiled with RENT so static and external variables need to be calculated from the
WSA field. The code was compiled with XREF, LIST and OFFSET to generate a
listing, which is used to calculate addresses of functions and data. The code was
processed by the binder with MAP to generate a binder map, which is used to
calculate the addresses of static and external variables.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
int statint = 73;
int fa;

void funch(int *pp);

int main(void) {
int aa, bb=1;
aa = bb;
funcb(&aa);
return(99);

}

void funch(int *pp) {
int result;
fa = *pp;
result = fa/(statint-73);
return;

Figure 52. C Routine with a Divide-by-Zero Error

To debug this routine, use the following steps:

1. Locate the Current Condition message in the Condition Information for Active
Routines section of the dump. In this example, the message is CEE3209S. The
system detected a fixed—point divide exception. This message indicates the
error was caused by an attempt to divide by zero. For additional information
about CEE3209S, see|z/0S Language Environment Run-Time Messageq .

The traceback section of the dump indicates that the exception occurred at
offset X'7E" within function funcb. This information is used along with the
compiler-generated Pseudo Assembly Listing to determine where the problem
occurred.

If the TEST compiler option is specified, variable information is in the dump. If the
GONUMBER compiler option is specified, statement number information is in the
dump. [Figure 53 on page 173 shows the generated traceback from the dump.

z/OS V1R5.0 Language Environment Debugging Guide

Information for enclave main

Information for thread 0B672E6800000000

Traceback:
DSA Addr Program Unit PU Addr
00015018 CEEHDSP 088AFB0OO
00017288 0B309C18
000171E0 0B309B28
000170C8 0876ED36
00017018 CEEBBEXT 00CA0508

PU Offset
+000025D2
+0000007E
+0000006E
-08765998
+0000013C

Condition Information for Active Routines

Condition Information for
CIB Address:

00015498

Current Condition:
CEEQ198S The termination of a thread was signaled due to an unhandled condition.
Original Condition:

CEE3209S The system detected a fixed-point divide exception.

Location:

Program Unit:

Machine State:

GPR12....

0002

00017330 GPRI.....
80CAO5EC GPR5.....
00000000 GPRY.....
00008910 GPR13....

Entry: funcb Statement:

Interruption Code.....
07802400 8B309C98

00017280
0B3076C8
80000000
00017288

Entry E Addr E Offset
CEEHDSP 088AFBOO +000025D2
funch 0B309C18 +0000007E
main OB309B28 +0000006E
EDCZMINV 0876ED36 -08765998
CEEBBEXT 00CA0508 +0000013C

(DSA address 00017288)

Offset: +0000007E

0009

GPR2..... 8876EDEA
GPR6..... 00000000
GPR10.... 8876ED2A
GPR14.... 00017288

Storage dump near condition, beginning at Tocation: 0B309C86

+000000 OB309C86 4B803052 5860304A 58656000 8E600020

GPR3..... 8B309C62
GPR7..... 00000001
GPR11.... 80CA0508
GPR15.... 0B309C18

1D685070 DOAO58DO DOO458EO DOOCI838

Statement Load Mod

CEEPLPKA
*PATHNAM
*PATHNAM
CEEEV003
CEEBINIT

Service
uQ13157

UQo9246

Status
Call
Exception
Call

Call

Call

Figure 53. Sections of the Dump from Example C/C++ Routine

2. Locate the instruction with the divide-by-zero error in the Pseudo Assembly
Listing in[Figure 54 on page 174
The offset (within funcb) of the exception from the traceback (X'7E') reveals the

divide instruction: DR

Chapter 4. Debugging C/C++ Routines

r6,r8 at that location. Instructions X'66' through X'80'
refer to the result = fa/(statint-73); line of the C/C++ routine.

173

OFFSET OBJECT CODE LINE# FILE# PSEUDO ASSEMBLY LISTING
*

000000 00015 funcb DS 0D
000000 47F0 FO26 00015 B 38(,rl5)
000004 01C3 C5C5 CEE eyecatcher
000008 0000 00A8 DSA size
00000C *x** xxkx =A(PPA1-funch)
000010 47F0 FOO1 00015 B 1(,rl15)
000014 183F 00015 LR r3,rl5
000016 58F0 C31C 00015 L r15,796(,r12)
00001A 184E 00015 LR rd,rl4
00001C O5EF 00015 BALR rl4,rl5
00001E 0000 0000 =F'e’
000022 47F0 303A 00015 B 58(,r3)
000026 90E8 DOOC 00015 STM rl14,r8,12(r13)
00002A 58E0 DOAC 00015 L r14,76(,rl13)
00002E 4100 EOA8 00015 LA r0,168(,rl4)
000032 5500 C314 00015 CL r0,788(,r12)
000036 4720 FOl4 00015 BH 20(,r15)
00003A 5000 EO4C 00015 ST r0,76(,rl4)
00003E 9210 E000 00015 MVI 0(rl4),16
000042 56D0 E004 00015 ST r13,4(,rl4)
000046 18DE 00015 LR ri3,rl4
000048 0530 00015 BALR r3,r0
00004A End of Prolog

00015 % void funcb(int *pp) {
00004A 5010 D098 00015 ST r1,152(,r13)
00004E 5850 C1F4 00015 L r5,500(,r12)

* int result;

00017 * fa = *pp;
000052 5860 D098 00017 L r6,152(,r13)
000056 5860 6000 00017 L r6,0(,r6)
00005A 5870 xx*x 00017 L r7,=Q(fa)
00005E 5860 6000 00017 L r6,0(,r6)
000062 5065 7000 00017 ST r6,0(r5,r7)

00018 * result = fa/(statint-73);
000066 5880 xx*x 00018 L r8,=Q(statint)
00006A 5885 8000 00018 L r8,0(r5,r8)
00006E 4BBO ***x 00018 SH rg8,=H'73"
000072 5860 x*x 00018 L r6,=Q(fa)
000076 5865 6000 00018 L r6,0(r5,r6)
00007A 8E60 0020 00018 SRDA 16,32
00007E 1D68 00018 DR r6,r8
000080 5070 DOA® 00018 ST r7,160(,r13)

00019 * return;

00020 *)
000084 Start of Epilog
000084 58D0 D004 00020 L r13,4(,r13)
000088 58EQ DOOC 00020 L rl4,12(,r13)
00008C 9838 D020 00020 LM r3,r8,32(r13)
000090 051E 00020 BALR rl,rld
000092 0707 00020 NOPR r7
000094 Start of Literals
000094 0000 0000 =Q(fa)
000098 0000 0000 =Q(statint)
00009C 0049 =H'73"
00009E End of Literals

PPA1l: Entry Point Constants
00009E 10CE A106 =F'281977094' Flags
0000A2 FFFF FF9C =A(PPA2-funch)
0000A6 0000 0000 =F'e’ No PPA3
0000AA 0000 0000 =F'e’ No EPD
0000AE FFEO 0000 =F'-2097152' Register save mask
0000B2 0000 0000 =F'o! Member flags
0000B6 90 AL1(144) Flags
0000B7 0000 00 AL3(0) Callee's DSA use/8
0000BA 0240 =H'576' Flags
0000BC 0014 =H'20" 0ffset/2 to CDL
0000BE 0005 ***x AL2(5),C' funcb'
0000C6 5000 0049 =F'1342177353" CDL function length/2
0000CA FFFF FF62 =F'-158" CDL function EP offset
0000CE 3825 0000 =F'941948928' CDL prolog
0000D2 4007 0042 =F'1074200642' CDL epilog
0000D6 0000 =H'0' CDL end

PPAL End

Figure 54. Pseudo Assembly Listing

174

z/OS V1R5.0 Language Environment Debugging Guide

3. \Verify the value of the divisor statint. The procedure specified below is to be
used for determining the value of static variables only. If the divisor is an
automatic variable, there is a different procedure for finding the value of the
variable. For more information about finding automatic variables in a dump, see
[‘Steps for finding automatic variables” on page 137}

Because this routine was compiled with the RENT option, find the WSA address
in the Enclave Control Blocks section of the dump. In this example, this address

is X'0B3076C8'. |Figure 55/shows the WSA address.

Enclave Control Blocks:

WSA address.....cceveeueennn 0B3076C8

Figure 55. C/C++ CAA Information in Dump

4. Routines compiled with the RENT option must also be processed by the binder.
The binder produces the Writable Static Map. Find the offset of statint in the
Writable Static Map in In this example, the offset is X'4'.

CLASS C_WSA LENGTH = 60 ATTRIBUTES = MRG, DEFER , RMODE=ANY ALIGN = DBLWORD
CLASS
OFFSET NAME TYPE LENGTH SECTION
0 fa PART 4 fa
4 statint PART 4 statint

Figure 56. Writable Static Map

5. Add the WSA address of X'0B3076C8' to the offset of statint. The result is
X'0B3076CC'. This is the address of the variable statint, which is in the
writable static area. The writable static area is storage allocated by the C/C++
run-time for the C/C++ user, so it is in the user heap. The heap content is
displayed in the Enclave Storage section of the dump, shown in
fpage 178

6. To find the variable statint in the heap, locate the closest address listed that is
before the address of statint. In this case, that address is X'0B3076CB'. Count
across X'04' to location X'0B3076CC'. The value at that location is X'49' (that is,
statint is 73), and hence the fixed point divide exception.

Chapter 4. Debugging C/C++ Routines 175

Enclave Storage:
Initial (User) Heap : 0B325000

WSA for Program Object(s)

WSA: 0B3076C8
+000000 0B3076C8 00000001 00000049 OB31B6FO 00000000 00000000 0000 VOO0 00000000
+000020 0B3076E8 00000001 00000001 00000000 00000000 00004650 00000001 00000000 OB3LEEEC
+000040 0B307708 00000000 00000000 OB31FO18 OB31EDCO 00000000 00000000 OB31F85C OB31F866

Figure 57. Enclave Storage Section of Dump

Calling a Nonexistent Non-XPLINK Function

176

demonstrates the error of calling a nonexistent function. This routine was
compiled with the compiler options LIST and RENT and was run with the option
TERMTHDACT(DUMP). The code was processed by the binder with MAP to
generate a binder map, which is used to calculate the addresses of static and
external variables.

This routine was not compiled with the TEST(ALL) compile option. As a result,
arguments and variables do not appear in the dump.

The only prelinker option used was MAP.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
void funca(intx aa);
int (*func_ptr)(void)=0;
int main(void) {
int aa;
funca(&aa);
printf("result of funca = %d\n",aa);
return;
}
void funca(int* aa) {
*aa = func_ptr();
return;

}

Figure 58. C/C++ Example of Calling a Nonexistent Subroutine

To debug this routine, use the following steps:

1. Locate the Current Condition message in the Condition Information for Active
Routines section of the dump, shown in [Figure 59 on page 177} In this example,
the message is CEE3201S The system detected an operation exception
(System Completion Code=0C1). This message suggests that the error was
caused by an attempt to branch to an unknown address. For additional
information about CEE3201S, see |z/OS Lanquage Environment Run-Time|

The traceback section of the dump indicates that the exception occurred at
offset X'-04500616"' within function funca. The negative offset indicates that the

z/OS V1R5.0 Language Environment Debugging Guide

offset cannot be used to locate the instruction that caused the error. Another

indication of bad data is the value of X'80000004' in the instruction address of

the PSW. This address indicates that an instruction in the routine branched

outside the bounds of the routine.

Information for enclave main

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

E Offset Statement Load Mod Service Status

PM....... 0100

GPRO..... 00000000 GPR1..... 00077448 GPR2..... 053AD9AF GPR3..... 853AD514

GPR4..... 00000001 GPR5..... 053AD314 GPR6..... 80077454 GPR7..... 00000000

GPR8..... 00000001 GPR9..... 80000000 GPR10.... 00077470 GPR11.... 000F7490

GPR12.... 00O6A520 GPR13.... 000773C8 GPR14.... 80060712 GPR15.... 853F7918

FPRO..... 4D00000O 00043C31 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000
Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr

0006B018 CEEHDSP 0001A5B8 +00001A18 CEEHDSP 0001A5B8 +00001A18

00075278 04500618 -04500616 funca 04500618 -04500616

000751D8 04500558 +00000068 main 04500558 +00000068

000750C8 046ABBAE +000000BO @@MNINV 046ABBAE +000000B0O

00075018 CEEBBEXT 00007768 +00000138 CEEBBEXT 00007768 +00000138

Condition Information for Active Routines
Condition Information for (DSA address 00075278)

CIB Address: 0006B3C8
Current Condition:

CEE0198S The termination of a thread was signalled.

Original Condition:

CEE3201S The system detected an operation exception (System

Location:

Program Unit: Entry: funca Statement:

Machine State:

ILC..... 0002 Interruption Code.....
PSW..... 078D0000 80000004

GPRO..... 00075308 GPRI..... 00075270
GPR4..... 046E5618 GPR5..... 046E5620
GPR8..... 04500698 GPRI..... 80000000

GPR12.... 00068520 GPR13....

00075278

Offset: -04500616

0001
GPR2..... 00075278
GPR6..... 00075268

GPR10.... 846ABBA2
GPR14.... 84500680

Parameters, Registers, and Variables for Active Routines:

CEEHDSP (DSA address 0006B018):
Saved Registers:

GPRO..... 0001BE62 GPRI.....
GPR4..... 00000000 GPR5.....
GPR8..... 00000001 GPRI.....

GPR12.... 00068520 GPR13....

funca (DSA address 00075278):
Saved Registers:

GPRO..... 00075308 GPRI.....
GPR4..... 046E5618 GPR5.....
GPR8..... 04500698 GPRI.....

GPR12.... 00068520 GPR13....

0006B32C
0005D8C0
0001C5B6
0006B018

00075270
046E5620
80000000
00075278

GPR2..... 00000003
GPR6..... 0001C8BB
GPR10.... 0001B5B7
GPR14.... 8005E712

GPR2..... 00075278
GPR6..... 00075268
GPR10.... 846ABBA2
GPR14.... 84500680

Completion Code=0C1).

84500666
00000000

... 80007768
. 00000000

0006BEC8
00000003

... 0001A5B8
. 846FC918

84500666
00000000

... 80007768
. 00000000

CEEPLPKA

CEEEV003
CEEBINIT

Call
Exception
Call
Call
Call

Figure 59. Sections of the Dump from Example C Routine

2. Find the branch instructions for funca in the listing in [Figure 60 on page 178,
Notice the BALR r14,r15 instruction at offset X'126'. This branch is part of the
instruction.

Chapter 4. Debugging C/C++ Routines

177

0000C0O 92 funca DS OF

000106C 0530 107 BALR r3,r0

00010E End of Prolog
00010E 5840 C1F4 109 L rd,500(,r12)
000112 5010 DO88 110 ST r1,136(,r13)
* return;
*)
*
00016 % void funca(int *aa) {
00017 * xaa = func_ptr();
000116 5870 D088 116 L r7,136(,r13)
00011A 5860 7000 117 L r6,0(,r7)
00011E 5870 *%** 118 L r7,=Q(func_ptr)
000122 58F4 7000 119 L r15,0(r4,r7)
000126 O5EF 120 BALR rl14,rl15

000128 50F0 6000 125 ST r15,0(,r6)

Figure 60. Pseudo Assembly Listing

3. Find the offset of FUNC@PTR in the Writable Static Map, shown in as
produced by the prelinker.

OFFSET LENGTH FILE ID INPUT NAME

0 4 00001 FUNC@PTR
8 18 00001 @STATIC

Figure 61. Writable Static Map

4. Add the offset of FUNC@PTR (X'0") to the address of WSA (X'46E5618'). The result
(X'46E5618') is the address of the function pointer func_ptr in the writable
static storage area within the heap. This value is 0, indicating the variable is
uninitialized.

[Figure 62 on page 179 shows the sections of the dump.

178 2z/0S V1R5.0 Language Environment Debugging Guide

Enclave Control Blocks:
WSA address...........ouuns

Enclave Storage:

Initial (User) Heap: 046E4000

046E5618

+001600 046E5600 CO5FA15A 7B4F5B7C 79000000 00000000 046E4000 00000028 00000000 00000000 |.~.!#]$6......... > i
+001620 046E5620 9985A2A4 93A34096 864086A4 95838140 7E406C84 15000000 00000000 00000000 |result of funca = %d............
+001640 046E5640 00000000 00000000 046E4000 00000010 00000000 80054152 046E4000 00000018 |......... > e > ...
+001660 046E5660 00000000 00000000 00000000 00000000 046E5638 00000000 00000010 00000000 [.......cevvneenn.. L

+001680 046E5680 00000000 00000000 00000000 60000000 00000000 00000000 00000000 00000000 |...ueeeviiiiiriiiireeennnnns

Figure 62. Enclave Control Blocks and Storage sections in Dump

Calling a Nonexistent XPLINK Function

demonstrates the error of calling a nonexistent function. This routine was
compiled with the compiler options XPLINK, LIST and RENT and was run with the
option TERMTHDACT(DUMP).

This routine was not compiled with the TEST(ALL) compile option. As a result,
arguments and variables do not appear in the dump.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
void funca(int* aa);

int (*func_ptr)(void)=0;
int main(void) {

}

int aa;

funca(&aa);

printf("result of funca = %d\n",aa);
return;

void funca(intx aa) {

}

*aa = func_ptr();
return;

Figure 63. C/C++ Example of Calling a Nonexistent Subroutine

To debug this routine, use the following steps:
1.

Locate the Current Condition message in the Condition Information for Active
Routines section of the dump, shown in |Figure 64 on page 1801 In this example,
the message is CEE3201S The system detected an operation exception
(System Completion Code=0C1). This message suggests that the error was
caused by an attempt to branch to an unknown address. For additional
information about CEE3201S, see [z/0S Language Environment Run-Time

The traceback section of the dump indicates that the exception occurred at
offset X'-23B553DE7" within function funca. The negative offset indicates that
the offset cannot be used to locate the instruction that caused the error. Another
indication of bad data is the value of X'80000004' in the instruction address of
the PSW. This address indicates that an instruction in the routine branched
outside the bounds of the routine.

Chapter 4. Debugging C/C++ Routines 179

Information for enclave main
Information

Traceback:
DSA Addr
241694E8
24169338
24209620
242096A0
24209720
241690E0
24169018

Program Unit
CEEHDSPR
CEEHRNUH

EDCZHINV
CEEBBEXT

PU Addr
23D7D3F8
23E78028
23B553E0
23B55358
23E7AD10
2413BFCO
00073380

for thread 8000000000000000

PU Offset
+000038DA
+00000082
-23B553DE
+00000012
+000009A4
+0000009A
+000001A6

Condition Information for Active Routines

Condition Information for

CIB Address: 24169D08
Current Condition:

Entry
CEEHDSPR
CEEHRNUH
funca
main
CEEVROND
EDCZHINV
CEEBBEXT

(DSA address 24209620)

E Addr

23D7D3F8
23E78028
23B553E0
23B55358
23E7AD68
2413BFCO
00073380

E Offset
+000038DA
+00000082
-23B553DE
+00000012
+0000094C
+0000009A
+000001A6

Statement Load Mod Service Status

CEEPLPKA Call
CEEPLPKA Call
XEXIST Exception
XEXIST Call
CEEPLPKA Call
CELHV003 Call
CEEBINIT Call

CEE0198S The termination of a thread was signaled due to an unhandled condition.

Original Condition:

CEE3201S The system detected an operation exception (System Completion Code=0Cl).

Location:

Program Unit: Entry: funca Statement:
Machine State:

ILC..... 0002 Interruption Code.....
PSW..... 078D2300 80000004

GPRO..... 23C7BFCO GPRI..... 24209F00

GPR4..... 24209620 GPR5..... 00FCD178

GPR8..... A3B55362 GPR9..... 23E7BDOF
GPR12.... 00O7FACO GPR13.... 241691B8

Storage dump near condition, beginning at location: 00000000

+000000 00000000

Information for enclave main

Inaccessible storage.

Information for thread 8000000000000000

Traceback:
DSA Addr
241694E8
24169338
24209620
242096A0
24209720
241690E0
24169018

Program Unit
CEEHDSPR
CEEHRNUH

EDCZHINV
CEEBBEXT

PU Addr
23D7D3F8
23E78028
23B553E0
23B55358
23E7AD10
2413BFCO
00073380

PU Offset
+000038DA
+00000082
-23B553DE
+00000012
+000009A4
+0000009A
+000001A6

Condition Information for Active Routines

Condition Information for

CIB Address: 24169D08
Current Condition:

Offset: -23B553DE

0001

GPR2..... 24169128 GPR3..... 2416912C

GPR6..... 00000000 GPR7..... A3B553FE

GPR10.... 00000000 GPR11.... A3E7AD10

GPR14.... 23E7AD68 GPR15.... 00000000
Entry E Addr E Offset Statement Load Mod Service Status
CEEHDSPR 23D7D3F8 +000038DA CEEPLPKA Call
CEEHRNUH 23E78028 +00000082 CEEPLPKA Call
funca 23B553E0 -23B553DE XEXIST Exception
main 23B55358 +00000012 XEXIST Call
CEEVROND 23E7AD68 +0000094C CEEPLPKA Call
EDCZHINV 2413BFCO +0000009A CELHV0O3 Call
CEEBBEXT 00073380 +000001A6 CEEBINIT Call

(DSA address 24209620)

CEEQ198S The termination of a thread was signaled due to an unhandled condition.

Original Condition:

CEE3201S The system detected an operation exception (System Completion Code=0C1).

Location:

Program Unit: Entry: funca Statement:
Machine State:

ILC..... 0002 Interruption Code.....
PSW..... 078D2300 80000004

GPRO..... 23C7BFCO GPRI..... 24209F00

GPR4..... 24209620 GPR5..... 00FCD178

GPR8..... A3B55362 GPR9..... 23E7BDOF
GPR12.... 0007FACO GPR13.... 241691B8

Offset: -23B553DE

0001

GPRZ2..... 24169128 GPR3
GPR6..... 00000000 GPR7
GPR10.... 00000000
GPR14.... 23E7AD68

Storage dump near condition, beginning at location: 00000000

+000000 00000000

Inaccessible storage.

2416912C
A3B553FE
GPRI11.... A3E7AD10
GPR15.... 00000000

Figure 64. Sections of the Dump from Example C Routine (Part 1 of 2)

180

z/OS V1R5.0 Language Environment Debugging Guide

Parameters, Registers, and Variables for Active Routines:
CEEHDSPR (DSA address 241694E8):

UPSTACK DSA
Saved Registers:

GPRO..... 23C7BFCO
GPR4..... 23CA7D20
GPR8..... A3D80A78
GPR12.... 0007FACO
FPR8..... HEKKKKKK

FPR1O. ... #*xkkkxs*
FPR12. ... #kxkkkx*
FPR14. ... #*xkkkx*

GPRIL..... 24169904
GPR5..... 00000002
GPRI..... 2416A4E7

GPRI13.... 241694E8
*hkkkkkk
*kkkkkkk
*kkkkkkk
*kkkkkkk

CEEHRNUH (DSA address 24169338):

TRANSITION DSA
Saved Registers:

GPRO..... 23C7BFCO
GPR4..... 24209620
GPR8..... 940C1000
GPR12.... 0007FACO
FPR8..... wE KKK

FPR10. ... #*xkkkx*
FPRIZ.... *xkkskskkk
FPRI4. ... Hkxkikkxk

GPRI..... 00000000
GPR5..... 24169338
GPRI..... 00000000

GPR13.... 24169338
*hkkkkkkk
*khkkkkkkk
*hkkkkkkk
*hkkkkkkk

funca (DSA address 24209620) :

DOWNSTACK DSA
Saved Registers:

GPRO..... 23C7BFCO
GPR4..... 24209620
GPR8..... A3B55362
GPR12.... 00O7FACO
FPR8..... HEKKKKKK

FPR1O. ... #*xkkkx*
FPR12. ... #*xkkkx*
FPR14. ... *¥xkxkkk

GPRI..... 24209F00
GPR5..... 00FCD178
GPRI..... 23E7BDOF

GPR13.... 24169188
*hkkkkkkk
*hkkkkkkk
kkhkkkkkkk
*khkkkkkkk

2416AF40
23CB29D0

... 23D817FC
. A3D80CD4

Kkkkkkhk

. kkkkkkkk
. kkkkkkkk

. kkkkkkkk

23CB1CAO
23CB29D0

... 23CB1D20
. A3E780AC

*kkkkkkk

. Fkkkkkkk
. FRkkkkkkk
. FRkEkkkkkk

24169128
00000000

... 00000000
. 23E7AD68

Kkkkhkhk

. kkkkkkkk
. kkkkkkkk

. kkkkkokkok

GPR3..... 00000003
GPR7..... 00000000
GPR11.... 23D7D3F8
GPR15.... A3D615D8
*kkkkkkk
*kkkkkkk
kkkkkkkk
kkkkkkkk
GPR3..... 23CB1D38
GPR7..... 24209620
GPRIL.... 23E78028

GPR15.... 23D7D3F8
Kok Kk k ok
Kk ok kK k ok
Kk kK k ok
Kk ok kK k&

GPR3..... 2416912C
GPR7..... A3B553FE
GPRI11.... A3E7AD10

GPR15.... 00000000
*kkkkhkk
*kkkkkkKk
*hkkkKKK
*kkkkkkk

Figure 64. Sections of the Dump from Example C Routine (Part 2 of 2)

2. Find the branch instructions for funca in the listing in [Figure 65 on page 182
Notice the BASR r7,r6 instruction at offset X'001C'. This branch is part of the

instruction.

Chapter 4. Debugging C/C++ Routines

181

00015 | % void funca(int* aa) {

000020 @2L0 DS 0D

000020 00C300C5 =F'12779717" XPLink entrypoint marker
000024 00C500F1 =F'12910833"'
000028 FFFFFFEQ =F'-32'
00002C 00000080 =F'128'
000000 00015 funca DS 0D
000000 9057 4784 00015 STM r5,r7,1924(r4)
000004 A74A FF80 00015 AHI ~ r4,H'-128'
000008 End of Prolog
000008 5010 48C0O 00015 ST rl,aa(,r4,2240)
00016 * *aa = func_ptr();
00000C 5860 4804 00016 L r6,#Save_ADA_Ptr_2(,r4,2052)
000010 5860 6018 00016 L r6,=A(func_ptr) (,r6,24)
000014 5860 6000 00016 L r6,func_ptr(,r6,0)
000018 9856 6010 00016 LM r5,r6,&8ADA_&EPA(r6,16)
00001C D76 00016 BASR r7,r6
00001E 4700 0004 00016 NOP 4
000022 1803 00016 LR ro,r3
000024 5860 48C0O 00016 L r6,aa(,r4,2240)
000028 5000 6000 00016 ST ro, (x)int(,r6,0)
00017 * return;
00018 *]
00002C 00018 0213 DS OH
00002C Start of Epilog
00002C 5870 480C 00018 L r7,2060(,r4)
000030 4140 4080 00018 LA r4,128(,r4)

000034 07F7 00018 BR r7

Figure 65. Pseudo Assembly Listing

3. Find the offset of func_ptr in the Writable Static Map, shown in

CLASS C_WSA LENGTH = 3C ATTRIBUTES = MRG, DEFER , RMODE=ANY
OFFSET = 0 IN SEGMENT 002 ALIGN = DBLWORD
CLASS
OFFSET NAME TYPE LENGTH SECTION
0 $PRIVO0OO11 PART 10
10 exist PART 28 EXIST
38 func_ptr PART 4 func_ptr

Figure 66. Writable Static Map

4. Add the offset of func_ptr (X'38') to the address of WSA (X'23C7BFCO0'). The
result (X'23C7BFF8') is the address of the function pointer func_ptr in the
writable static storage area within the heap. This value is 0, indicating the
variable is uninitialized.

[Figure 67 on page 183 shows the sections of the dump.

182 2z/0S V1R5.0 Language Environment Debugging Guide

Enclave Control Blocks:

DLL Information:

WSA Addr Module Addr Thread ID Use Count Name

23C7BFCO

WSA address...........

Enclave Storage:

WSA for Program Object(s)

WSA: 23C7BFCO

00000001 main

...... 23C7BFCO

+000000 23C7BFCO C36DEGE2 C1404040 40404040 40404040 9985A2A4 93A34096 864086A4 95838140 |C_WSA result of funca
+000020 23C7BFEO 7E406C84 15000000 23C7BFF8 00000000 00000060 23EA78A0 00000000 00000000 |=%d..... G.8....... e >

Figure 67. Enclave Control Blocks and Storage sections in Dump

Handling Dumps Written to the z/0OS UNIX File System

When a z/OS UNIX C/C++ application program is running in an address space
created as a result of a call to spawnp(), vfork, or one of the exec family of
functions, the SYSMDUMP DD allocation information is not inherited. Even though
the SYSMDUMP allocation is not inherited, a SYSMDUMP allocation must exist in
the parent in order to obtain a HFS core dump. If the program terminates
abnormally while running in this new address space, the kernel causes an
unformatted core dump to be written to an HFS file in the user’s working directory.
The file is placed in the current working directory or into /tmp if the current working
directory is not defined. The file name has the following format:

/directory/coredump.pid

where directory is the current working directory or tmp, and pid is the hexadecimal
process ID (PID) for the process that terminated. For details on how to generate the
system dump, see |“Steps for Generating a system dump in a z/OS UNIX shell” on|
_page 79.

To debug the dump, use the MVS Interactive Problem Control System (IPCS). If the
dump was written to an HFS file, you must allocate a data set that is large enough
and has the correct attributes for receiving a copy of the HFS file. For example,
from the ISPF DATA SET™ UTILITY panel you can specify a volume serial and data
set name to allocate. Doing so brings up the DATA SET INFORMATION panel for
specifying characteristics of the data set to be allocated. The following filled-in panel
shows the characteristics defined for the URCOMP.JRUSL.COREDUMP dump data
set:

Chapter 4. Debugging C/C++ Routines 183

—————————————————————————— DATA SET INFORMATION =-----mmmmmmmmmmmmmom
Command ===>
Data Set Name : URCOMP.JRUSL.COREDUMP
General Data Current Allocation
Management class . . : STANDARD Allocated cylinders : 30
Storage class : 0S390 Allocated extents . : 1
Volume serial . . . : DPXDU1
Device type : 3380
Data class :
Organization : PS Current Utilization
Record format . . . : FB Used cylinders. . . : 0
Record length . . . : 4160 Used extents 0
Block size : 4160
1st extent cylinders: 30
Secondary cylinders : 10
Data set name type
Creation date . . . : 2001/08/30
Expiration date . . : ***Nonex=
Fl=Help F2=Split F3=End F4=Return F5=Rfind F6=Rchange
\f7=Up F8=Down F9=Swap Fl0=Left F11=Right F12=Cancel)

Figure 68. IPCS Panel for Entering Data Set Information

Fill in the information for your data set as shown, and estimate the number of
cylinders required for the dump file you are going to copy.

Use the TSO/E OGET or OCOPY command with the BINARY keyword to copy the
file into the data set. For example, to copy the HFS core dump file
coredump.00060007 into the data set URCOMP.JRUSL.COREDUMP just allocated, a
user with the user ID URCOMP enters the following command:

O0GET '/u/urcomp/coredump.00060007' 'urcomp.jrusl.coredump' BINARY

For more information on using the copy commands, see [zZ0S UNIX Systern]
[Services User’s Guide,

After you have copied the core dump file to the data set, you can use IPCS to
analyze the dump. Refer to [‘Formatting and analyzing system dumps” on page 80|
for information about formatting Language Environment control blocks.

Multithreading

Consideration

Certain control blocks are locked while a dump is in progress. For example, a
csnap() of the file control block would prevent another thread from using or
dumping the same information. An attempt to do so causes the second thread to
wait until the first one completes before it can continue.

Understanding C/C++ Heap Information in Storage Reports

184

Storage reports that contain specific C/C++ heap information can be generated in

two ways:

* By setting the Language Environment RPTSTG(ON) run-time option for
Language Environment created heaps

* By issuing a stand-alone call to the C function, __uheapreport() for user—created
heaps.

z/OS V1R5.0 Language Environment Debugging Guide

Details on how to request and interpret the reports are provided in the following
sections.

Language Environment Storage Report with HeapPools Statistics

To request a Language Environment storage report set RPTSTG(ON). If the C/C++
application specified the HEAPPOOLS(ON) run-time option, then the storage report
displays HeapPools statistics. For a sample storage report showing HeapPools
statistics for a multithreaded C/C++ application, see |Figure 3 on page 1Sl

The following describes the C/C++ specific heap pool information.

HeapPools Storage Statistics

The HEAPPOOLS run-time option controls usage of the heap pools storage
algorithm at the enclave level. The heap pools algorithm allows for the definition of
one to twelve heap pools, each consisting of a number of storage cells of a
specified length.

Usage Note: The use of an alternative Vendor Heap Manager (VHM) overrides the
use of the HEAPPOOLS run-time option.

HeapPools Statistics:
* Pool p size: ssss
— p — the number of the pool
— s8sss — the cell size specified for the pool.
» Successful Get Heap requests: xxxx-yyyy n
— xxxx — the low side of the 8 byte range
— yyyy — the high side of the 8 byte range
— n — the number of requests in the 8 byte range.
* Requests greater than the largest cell size — the number of storage requests
that are not satisfied by heap pools.

Note: Values displayed in the HeapPools Statistics report are not serialized when
collected, therefore the values are not necessarily exact.

HeapPools Summary: The HeapPools Summary displays a report of the
HeapPool Statistics and provides suggested percentages for current cell sizes as
well as suggested cell sizes.

* Cell Size — the size of the cell specified in the HEAPPOOLS run-time option

» Extent Percent — the cell pool percent specified by the HEAPPOOLS run-time
option

» Cells Per Extent — the number of cells per extent. This number is calculated
using the following formula:
Initial Heap Size * (Extent Percent/100))/(8 + Cell Size)

with a minimum of four cells.

Note: Having a small number of cells per extent is not recommended since the
pool could allocate many extents, which would cause the HeapPool
algorithm to perform inefficiently.

» Extents Allocated — the number of times that each pool allocated an extent.

In order to optimize storage usage, the extents allocated should be either one or
two. If the number of extents allocated is too high, then increase the percentage
for the pool.

Chapter 4. Debugging C/C++ Routines 185

* Maximum Cells Used — the maximum number of cells used for each pool.
* Cells In Use — the number of cells that were never freed.

Note: A large number in this field could indicate a storage leak.

» Suggested Percentages for current Cell Sizes — percentages calculated to find
the optimal size of the cell pool extent. The calculation is based on the following
formula:

(Maximum Cells Used * (Cell Size + 8) * 100) / Initial Heap Size

With a minimum of 1% and a maximum of 90%

Make sure that your cell pool extents are neither too large nor too small. If your
percentages are too large then additional, unreferenced virtual storage will be
allocated, thereby causing the program to exhaust the region size. If the
percentages are too small then the HeapPools algorithm will run inefficiently.

» Suggested Cell Sizes — sizes that are calculated to optimally use storage
(assuming that the application will malloc/free with the same frequency).

Note: The suggested cell sizes are given with no percentages because the
usage of each new cell pool size is not known. If there are less than 12
cell sizes calculated and the last calculated cell size is smaller than the
largest cell size currently in effect, the largest cell size currently in effect
will be used for the last suggested cell size.

For more information about stack and heap storage, see |zZ0S Language]
|Environment Programming Guidel

C Function, __uheapreport, Storage Report

186

To generate a user-created heap storage report use the C function,
__uheapreport(). Use the information in the report to assist with tuning your
application’s use of the user-created heap. For a description of the information
contained in the report, see [‘HeapPools Storage Statistics” on page 185.]

For more information on the __uheapreport() function, see|z/OS C/C++ Run-Time
Library Referencd. For tuning tips, see|z/0OS Language Environment Programming|

Guidg.
A sample storage report generated by ___uheapreport() is shown in [Figure 69 on
page 187

z/OS V1R5.0 Language Environment Debugging Guide

Storage Report for Enclave 08/30/01 11:42:23 AM
Language Environment VOl R03.00

HeapPools Statistics:
Pool 1 size: 32

Successful Get Heap requests: 1- 32 11250
Pool 2 size: 128

Successful Get Heap requests: 97- 128 3306
Pool 3 size: 512

Successful Get Heap requests: 481- 512 864
Pool 4 size: 2048

Successful Get Heap requests: 2017- 2048 216
Pool 5 size: 8192

Successful Get Heap requests: 8161- 8192 54
Pool 6 size: 16384

Successful Get Heap requests: 16353-16384 27
Requests greater than the largest cell size: 0

HeapPools Summary:

Cell Extent Cells Per Extents Maximum Cells In
Size Percent Extent Allocated Cells Used Use

32 15 3750 1 3750 0

128 15 1102 1 1102 0

512 15 288 1 288 0
2048 15 72 1 72 0
8192 15 18 1 18 0
16384 15 9 1 9 0

Suggested Percentages for current Cell Sizes:
32,15,128,15,512,15,2048,15,8192,15,16384,15
Suggested Cell Sizes:
32,,128,,512,,2048,,8192,,16384,
End of Storage Report

Figure 69. Storage Report Generated by __uheapreport()

Chapter 4. Debugging C/C++ Routines

187

188 2z/0S V1R5.0 Language Environment Debugging Guide

Chapter 5. Debugging COBOL programs

This chapter provides information for debugging applications that contain one or
more COBOL programs. It includes information about:

» Determining the source of error

* Generating COBOL listings and the Language Environment dump

* Finding COBOL information in a dump

» Debugging example COBOL programs

Determining the source of error

The following sections describe how you can determine the source of error in your
COBOL program. They explain how to simplify the process of debugging COBOL
programs by using features such as the DISPLAY statement, declaratives, and file
status keys. The following methods for determining errors are covered:

» Tracing program logic

» Finding and handling input/output errors

» Validating data

» Assessing switch problems

* Generating information about procedures

After you have located and fixed any problems in your program, you should delete
all debugging aids and recompile it before running it in production. Doing so helps
the program run more efficiently and use less storage.

Tracing program logic
You can add DISPLAY statements to help you trace through the logic of the
program in a non-CICS environment. If, for example, you determine that the
problem appears in an EVALUATE statement or in a set of nested IF statements,
DISPLAY statements in each path tell you how the logic flows. You can also use
DISPLAY statements to show you the value of interim results.

For example, to check logic flow, you might insert:
DISPLAY "ENTER CHECK PROCEDURE".

(checking procedure routine)

DISPLAY "FINISHED CHECK PROCEDURE".

to determine whether you started and finished a particular procedure. After you are
sure that the program works correctly, comment out the DISPLAY statement lines

by putting asterisks in position 7 of the appropriate lines. For a detailed description
of the DISPLAY statement, see [Enterprise COBOL for z/OS and 0S/390 Languag€

Scope terminators can also help you trace the logic of your program because they
clearly indicate the end of a statement. For a detailed description of scope
terminators, see [Enterprise COBOL for z/0S and OS/390 Programming Guide or
|COBOL for 0S/390 & VM Programming Guidel

Finding input/output errors

VSAM file status keys can help you determine whether routine errors are due to the
logic of your routine or are 1/O errors occurring on the storage media.

© Copyright IBM Corp. 1991, 2004 189

To use file status keys as a debugging aid, include a test after each 1/O statement
to check for a value other than 0 in the file status key. If the value is other than 0,
you can expect to receive an error message. You can use a nonzero value to
indicate how the 1/O procedures in the routine were coded. You can also include
procedures to correct the error based on the file status key value.

The file status key values and their associated meanings are described in
Enterprise COBOL for z/OS and 0S/390 Language Referenceland in|COBOL foi|
0S/390 & VM Language Referencel

Handling input/output errors

If you have determined that the problem lies in one of the I/O procedures in your
program, you can include the USE EXCEPTION/ERROR declarative to help debug
the problem. If the file does not open, the appropriate USE EXCEPTION/ERROR
declarative is activated. You can specify the appropriate declarative for the file or for
the different open attributes—INPUT, OUTPUT, I/O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a separate section
immediately after the Declarative Section keyword of the Procedure Division. See
the rules for coding such usage statements in|Enterprise COBOL for z/OS and
[0S/390 Language Referencd or in|COBOL for 0S/390 & VM Language Referenced.

Validating data (class test)

If you suspect that your program is trying to perform arithmetic on nonnumeric data
or is somehow receiving the wrong type of data on an input record, you can use the
class test to validate the type of data. For a detailed discussion of how to use the
class test to check for incompatible data, see |[Enterprise COBOL for z/OS and
[0S/390 Programming Guide|or[COBOL for 0S/390 & VM Programming Guidd .

Assessing switch problems

Using INITIALIZE or SET statements to initialize a table or data item is useful when
you suspect that a problem is caused by residual data left in those fields. If your
problem occurs intermittently and not always with the same data, the problem could
be that a switch is not initialized, but is generally set to the right value (0 or 1). By
including a SET statement to ensure that the switch is initialized, you can determine
whether or not the uninitialized switch is the cause of the problem. For a detailed
discussion of how to use the INITIALIZE and SET statements, see|EnterprisE|
COBOL for z/0S and OS/390 Programming Guide or [COBOL for 0S/390 & VM|
Programming Guidd.

Generating information about procedures

190

You can use the USE FOR DEBUGGING declarative to include COBOL statements
in a COBOL program and specify when they should run. Use these statements to
generate information about your program and how it is running.

For example, to check how many times a procedure is run, include a special
procedure for debugging (in the USE FOR DEBUGGING declarative) that adds 1 to
a counter each time control passes to that procedure. The adding-to-a-counter
technique can be used as a check for:

* How many times a PERFORM ran. This shows you whether the control flow you
are using is correct.

* How many times a loop routine actually runs. This tells you whether the loop is
running and whether the number you have used for the loop is accurate.

z/OS V1R5.0 Language Environment Debugging Guide

Code each USE FOR DEBUGGING declarative in a separate section in the
DECLARATIVES SECTION of the PROCEDURE DIVISION. See the rules for
coding them in [Enterprise COBOL for z/0OS and 0S/390 Language Referencd or in
[COBOL for 0S/390 & VM Language Referencel

You can use debugging lines, debugging statements, or both in your program.
Debugging lines are placed in your program, and are identified by a D in position 7.
Debugging statements are coded in the DECLARATIVES SECTION of the
PROCEDURE DIVISION.

 The USE FOR DEBUGGING declaratives must:
— Be only in the DECLARATIVES SECTION
— Follow a DECLARATIVES header USE FOR DEBUGGING

With USE FOR DEBUGGING, the TEST compiler option must have the NONE
hook-location suboption specified or the NOTEST compiler option must be
specified. The TEST compiler option and the DEBUG run-time option are
mutually exclusive, with DEBUG taking precedence.

* Debugging lines must have a D in position 7 to identify them.

To use debugging lines and statements in your program, you must include both:

* WITH DEBUGGING MODE in the SOURCE-COMPUTER paragraph in the
ENVIRONMENT DIVISION

* The DEBUG run-time option

[Figure 70 on page 192|shows how to use the DISPLAY statement and the USE
FOR DEBUGGING declarative to debug a program.

Chapter 5. Debugging COBOL programs 191

192

Environment Division
Source Computer . . . With Debugging Mode.

Data Division.

. File Section.
Working-Storage Section.

*(among other entries you would need:)
01 Trace-Msg PIC X(30)

Value " Trace for Procedure-Name :
01 Total PIC 99 Value Zeros.

*(balance of Working-Storage Section)

Procedure Division.
Declaratives.
Debug-DecTlar Section.

Use For Debugging On 501-Some-Routine.
Debug-Declar-Paragraph.

Display Trace-Msg, Debug-Name, Total.
Debug-Declar-End.

Exit.

End Declaratives.

Eegin-Program Section.
Perform 501-Some-Routine.
*(within the module where you want to test, place:)
Add 1 To Total

% (whether you put a period at the end depends on
* where you put this statement.)

Figure 70. Example of Using the WITH DEBUGGING MODE Clause

In the example in [Figure 70} portions of a program are shown to illustrate the kind
of statements needed to use the USE FOR DEBUGGING declarative. The DISPLAY
statement specified in the DECLARATIVES SECTION issues the:

Trace For Procedure-Name : 501-Some-Routine nn

message every time the PERFORM 501-SOME-ROUTINE runs. The total shown,
nn, is the value accumulated in the data item named TOTAL.

Another use for the DISPLAY statement technique shown above is to show the flow
through your program. You do this by changing the USE FOR DEBUGGING
declarative in the DECLARATIVES SECTION to:

USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement.

z/OS V1R5.0 Language Environment Debugging Guide

Using COBOL listings

When you are debugging, you can use one or more of the following listings:
» Sorted Cross-Reference listing
« Data Map listing

» Verb Cross-Reference listing

* Procedure Division Listings

This section gives an overview of each of these listings and specifies the compiler
option you use to obtain each listing. For a detailed description of available listings,
sample listings, and a complete description of COBOL compiler options, see

Table 19. Compiler-generated COBOL Listings and Their Contents

Enterprise COBOL for z/OS and 0S/390 Programming Guide| or[COBOL for 0S/39(
& VM Programming Guid

Name

Contents

Compiler Option

Sorted Cross-Reference Listings

Provides sorted cross-reference listings of DATA DIVISION,
PROCEDURE DIVISION, and program names. The listings
provide the location of all references to this information.

XREF

Data Map listing

Provides information about the locations of all DATA DIVISION
items and all implicitly declared variables. This option also
supplies a nested program map, which indicates where the
programs are defined and provides program attribute
information.

MAP

Verb Cross-Reference listing

Produces an alphabetic listing of all the verbs in your program
and indicates where each is referenced.

VBREF

Procedure Division listings

Tells the COBOL compiler to generate a listing of the
PROCEDURE DIVISION along with the assembler coding
produced by the compiler. The list output includes the
assembler source code, a map of the task global table (TGT),
information about the location and size of WORKING-
STORAGE and control blocks, and information about the
location of literals and code for dynamic storage usage.

LIST

Procedure Division listings

Instead of the full PROCEDURE DIVISION listing with
assembler expansion information, you can use the OFFSET
compiler option to get a condensed listing that provides
information about the program verb usage, global tables,
WORKING-STORAGE, and literals. The OFFSET option takes
precedence over the LIST option. That is, OFFSET and LIST
are mutually exclusive; if you specify both, only OFFSET takes
effect.

OFFSET

Generating a Language Environment dump of a COBOL program

The two sample programs shown in |Figure 71 on page 194] and [Figure 72 on page]
generate Language Environment dumps with COBOL-specific information.

COBOL program that calls another COBOL program

In this example, program COBDUMP1 calls COBDUMP2, which in turn calls the
Language Environment dump service CEE3DMP.

Chapter 5. Debugging COBOL programs 193

CBL TEST(STMT,SYM),RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBDUMP1.

AUTHOR. USER NAME

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 SOME-WORKINGSTG.
05 SUB-LEVEL PIC X(80).

01 SALARY-RECORDA.

02 NAMEA PIC X(10).
02 DEPTA PIC 9(4).
02 SALARYA PIC 9(6).

PROCEDURE DIVISION.
START-SEC.
DISPLAY "STARTING TEST COBDUMP1".
MOVE "THIS IS IN WORKING STORAGE" TO SUB-LEVEL.
CALL "COBDUMP2" USING SALARY-RECORDA.
DISPLAY "END OF TEST COBDUMP1"
STOP RUN.
END PROGRAM COBDUMP1.

Figure 71. COBOL Program COBDUMP1 Calling COBDUMP2

COBOL program that calls the Language Environment CEE3DMP
callable service

In the example in [Figure 72 on page 195 program COBDUMP2 calls the Language
Environment dump service CEE3DMP.

194 z/0S V1R5.0 Language Environment Debugging Guide

CBL TEST(STMT,SYM),RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBDUMPZ.

AUTHOR. USER NAME

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL IOFSS1 ASSIGN AS-ESDS1DD
ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD IOFSS1 GLOBAL.
1 IOFSSIR PIC X(40).

WORKING-STORAGE SECTION.
01 TEMP4.
05 A-1 OCCURS 2 TIMES.
10 A-2 OCCURS 2 TIMES.

15 A-3V PIC X(3).
15 A-6 PIC X(3).

77 DMPTITLE PIC X(80).

77 OPTIONS PIC X(255).

77 FC PIC X(12).

LINKAGE SECTION.

01 SALARY-RECORD.

02 NAME PIC X(10).
02 DEPT PIC 9(4).
02 SALARY PIC 9(6).

PROCEDURE DIVISION USING SALARY-RECORD.
START-SEC.
DISPLAY "STARTING TEST COBDUMP2"
MOVE "COBOL DUMP" TO DMPTITLE.
MOVE "XXX" TO A-6(1, 1).
MOVE "YYY" TO A-6(1, 2).
MOVE "ZzZZ" TO A-6(2, 1).
MOVE " BLOCKS STORAGE PAGE(55) FILES" TO OPTIONS.
CALL "CEE3DMP" USING DMPTITLE, OPTIONS, FC.
DISPLAY "END OF TEST COBDUMP2"
GOBACK.
END PROGRAM COBDUMP2.

Figure 72. COBOL Program COBDUMP2 Calling the Language Environment Dump Service

CEE3DMP

Sample Language Environment dump with COBOL-specific information

The call in program COBDUMP2 to CEE3DMP generates a Language Environment
dump, shown in [Figure 73 on page 196 The dump includes a traceback section,
which shows the names of both programs; a section on register usage at the time
the dump was generated; and a variables section, which shows the storage and

data items for each program. Character fields in the dump are indicated by sin

quotes. For an explanation of these sections of the dump, see [‘Finding COBOL

information in a dump” on page 197

Chapter 5. Debugging COBOL programs

le

195

CEE3DMP V1 R3.0: COBOL DUMP 08/30/01 11:49:15 AM Page: 1
CEE3DMP called by program unit COBDUMP2 at statement 40 (offset +00000430).

Registers on Entry to CEE3DMP:

PM....... 0000

GPRO..... 0D41F838 GPRI..... 00027158 GPR2..... 0D4232C8 GPR3..... 00302302
GPR4..... OD301FAO GPR5..... 00047038 GPR6..... 00000000 GPR7..... 00FCABOO
GPR8..... 0D423160 GPRI..... OD41F700 GPR10.... 0D302070 GPRI1I.... 0D302234
GPR12.... 00016A48 GPR13.... 000270CO0 GPR14.... 8001EQOE2 GPRI15.... 8D353858
FPRO..... 00000000 00000000 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

GPREG STORAGE:
Storage around GPRO (0D41F838)
-0020 OD41F818 00000000 00000000 0000000 OD423110 0D423160 00000000 OD4230D8 0004CO38 |.veeereueeennneenns LI Q..
+0000 OD41F838 00000000 00000000 0D302450 O7FEQ7FE 00000000 00000000 OOOOLFFF O7FEQGO0 |........... Bttt
+0020 OD41F858 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0OO00OOO | .vuereurrriierrinereneseenssenn

Information for enclave COBDUMP1
Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

PM....... 0000

GPRO..... 0D41F838 GPRI..... 00027158 GPR2..... 0D4232C8 GPR3..... 0D302302
GPR4..... OD301FAO GPR5..... 00047038 GPR6..... 00000000 GPR7..... 00FCABOO
GPR8..... 0D423160 GPRI..... 0D41F700 GPR10.... 0D302070 GPR11.... 0D302234
GPR12.... 00016A48 GPR13.... 000270CO GPR14.... 8001EOE2 GPR15.... 8D353858
FPRO..... 00000000 00000000 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

GPREG STORAGE:
Storage around GPRO (0D41F838)
-0020 OD41F818 00000000 00000000 00000000 OD423110 0D423160 00000000 OD4230D8 0004CO38 |..evvverivrennrenns I Q..
+0000 OD41F838 00000000 00000000 0D302450 O7FEQ7FE 00000000 00000000 OOOO1FFF O7FEQOO0 |........... B e
+0020 ODA1F858 00000000 00000000 00000000 00000000 00000000 000000 00000000 OOOOOOOO | .v.vieiir ittt iiieiiieeenneeenn

Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
000270C0 COBDUMP2 0D301F68 +00000430 COBDUMP2 0D301F68 +00000430 40 GO Call
00027018 COBDUMP1 0D300100 +0000033E COBDUMP1 0D300100 +0000033E 23 GO Call

Parameters, Registers, and Variables for Active Routines: COBDUMP2 (DSA address 000270C0) :
Saved Registers:

GPRO..... 0D41F838 GPRI..... 00027158 GPR2..... 0D4232C8 GPR3..... 0D302302
GPR4..... OD301FA® GPR5..... 00047038 GPR6..... 00000000 GPR7..... 00FCABOO
GPR8..... 0D423160 GPRI..... 0D41F700 GPR10.... 0D302070 GPR11.... 0D302234

GPR12.... 00016A48 GPR13.... 000270CO GPR14.... 8001EOE2 GPR15.... 8D353858
GPREG STORAGE:
Storage around GPRO (0D41F838)
-0020 0D41F818 00000000 00000000 00000000 0D423110 0D423160 00000000 0D4230D8 0004CO38 |....ceveiiiiieennnn. N Q..
+0000 OD41F838 00000000 00000000 0D302450 O7FEQ7FE 00000000 00000000 0OO01FFF O7FEOOO0 |........... Bttt
+0020 OD41F858 00000000 00000000 00000000 00000000 00000000 0000000 00000000 OOOOOOO0 |..vvveeteiiiiiiiieeeeeeeennnnns

Figure 73. Sections of the Language Environment Dump Called from COBDUMPZ2 (Part 1 of 2)

196 2z/0S V1R5.0 Language Environment Debugging Guide

Local Variables:

13 IO0FSS1

FILE SPECIFIED AS: OPTIONAL, ORGANIZATION=VSAM SEQUENTIAL,
ACCESS MODE=SEQUENTIAL, RECFM=FIXED. CURRENT STATUS OF
FILE IS: NOT OPEN, VSAM STATUS CODE=00, VSAM FEEDBACK=000,
VSAM RET CODE=000, VSAM FUNCTION CODE=000.

14 01 IOFSSIR X(40) DISP !
17 01 TEMP4 AN-GR
18 02 A-1 AN-GR OCCURS 2
19 03 A-2 AN-GR OCCURS 2
20 04 A-3V XXX
SUB(1,1) DISP ! !
SUB(1,2) to SUB(2,2) elements same as above.
21 04 A-6 XXX
SUB(1,1) DISP 'XXX!
SUB(1,2) 'Yyy!
SUB(2,1) ‘777"
SUB(2,2) o
22 77 DMPTITLE X(80) DISP 'COBOL DUMP
23 77 OPTIONS X(255) DISP ' BLOCKS STORAGE PAGE(55) FILES
24 77 FC X(12) DISP ! !
27 01 SALARY-RECORD AN-GR
28 02 NAME X(10) DISP !
29 02 DEPT 9999 DISP
30 02 SALARY 9(6) DISP
COBDUMP1 (DSA address 00027018):
Saved Registers:
GPRO..... OD41F1A8 GPRI..... 000270BO GPR2..... 0D4230D8 GPR3..... 0D3003EA
GPR4..... 0D300138 GPR5..... 00015AE8 GPR6..... 00000000 GPR7..... 00000000
GPRS..... 0D423088 GPRI..... 0D41F078 GPR10.... 0D300208 GPR11.... ©D300328

GPR12.... 00016A48 GPR13.... 00027018 GPR14.... 8D300440 GPR15.... OD301F68
GPREG STORAGE:
Storage around GPRO (OD41F1A8)
-0020 OD41F188 00000000 0D423088 00000000 00000000 00000000 OD423038 0D423088 00000000 |....... Nt h...
+0000 ODA1F1A8 00047370 00000000 0D300528 O7FEQ7FE 00000000 00000000 OOOOLFFF O7FEQOO0 | .vuvreurrrennrennerennneennnnnn
+0020 ODA1F1C8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOOOO | .vvvverirrriirriinerinnreennrenn

Local Variables:
10 01 SOME-WORKINGSTG AN-GR

11 02 SUB-LEVEL X(80) DISP 'THIS IS IN WORKING STORAGE
13 01 SALARY-RECORDA AN-GR

14 02 NAMEA X(10) DISP !

15 02 DEPTA 9999 DISP

16 02 SALARYA 9(6) DISP

Figure 73. Sections of the Language Environment Dump Called from COBDUMP2 (Part 2 of 2)

Finding COBOL information in a dump

Like the standard Language Environment dump format, dumps generated from
COBOL programs contain:

» Control block information for active programs

» Storage for each active program

* Enclave-level data

* Process-level data

Control block information for active routines

The Control Blocks for Active Routines section of the dump, shown in

displays the following information for each active COBOL program:

+ DSA

* Program name and date/time of compile

» COBOL compiler Version, Release, Modification, and User Level

* COBOL control blocks TGT and CLLE. The layout of the TGT can be found by
looking at the compiler listing of the COBOL program. The CLLE is a COBOL

Chapter 5. Debugging COBOL programs 197

control block that is allocated by the COBOL runtime for each program. The
CLLE is dumped for IBM service personnel use.

éontro1 Blocks for Active Routines:
DSA for COBDUMP2: 000270CO

+000000 FLAGS.... 0010 member. .. 4001 BKC...... 00027018 FWC...... 00027168 RI14...... 8001EQE2
+000010 R15...... 80353858 RO....... 0D41F838 RIl....... 00027158 R2....... 0D4232C8 R3....... 00302302
+000024 R4....... OD301FAO R5....... 00047038 R6....... 00000000 R7....... 00FCABOO R8....... 0D423160
+000038 R9....... 0D41F700 R10...... 00302070 R1l...... 00302234 R12...... 00016A48 reserved. 00000000
+00004C NAB...... 00027168 PNAB..... 00000000 reserved. 00000000 000270CO0 ©D41F700 00101001
+000064 reserved. 00027018 reserved. 000270E4 MODE..... 8D30239A reserved. 000270EC 000270F4

+000078 reserved. 000270F0 reserved. 000270F8

Program COBDUMP2 was compiled 08/04/01 11:49:09 AM

COBOL Version = 02 Release = 01 Modification = 01 User Level = ' '

TGT for COBDUMP2: OD41F700
+000000 OD41F700 00000000 00000000 00000000 00O 00000000 00000000 OO0 00000000
+000020 OD41F720 - +00003F OD41F73F same as above
+000040 OD41F740 00000000 00000000 F3E3C7E3 00000000 05000000 42030220 00047038 000187FC
+000060 OD41F760 ©D41F920 00000001 00000174 0OOOAE00 00000000 0D423100 0OOEOOO0 00000000
+000080 OD41F780 00016A48 0000021C 00000000 00000 00000000 00000001 E2E8E2D6 E4E34040
+0000A0 OD41F7A0 C9C7E9E2 DIE3C3C4 00000000 0000000 00000000 00000000 OO0 00000000
+0000CO OD41F7CO 00000000 00000000 00000000 0OOOOOOO 00000000 00000000 OO0 00000000
+0000EO OD41F7E0 00000000 00000000 0D302064 00000001 ODA1FI08 00047370 ©D3020F3 OD41F83C
+000100 OD41F800 0D301F68 0D302078 OD41F904 0D30206C OD41F904 0D423160 00000000 00000000
+000120 OD41F820 00000000 0D423110 0D423160 0000OO00 0D4230D8 0004CO38 0OOOOOOO 00000000
+000140 OD41F840 0D302450 07FEO7FE 00000000 00000000 00001FFF 07FE0000 00000000 00000000
+000160 OD41F860 00000000 00000000 00000000 0OOEEEOO 00000000 00000000 OO0 00000000
+000180 OD41F880 - +00O1FF OD41F8FF same as above
+000200 OD41F900 00000000 OD41F950 40000000 00000000 00000000 OD41FA50 00000001 00000000

CLLE for COBDUMP2: 00047370
+000000 00047370 C3D6C2C4 EADAD7F2 00000100 00000000 84810000 OD301F68 0D41F700 00000000 |COBDUMPZ........ da........ Tevinn
+000020 00047390 00000000 OD41F5AC OD41F6B8 00047328 00047000 000000C8 0OOOOOCO 00000000 |...... L Hoooonin

Figure 74. Control Block Information for Active COBOL Routines

Storage for each active routine

The Storage for Active Routines section of the dump, shown in [Figure 75 on page]

displays the following information for each COBOL program:

* Program name

* Contents of the base locators for files, WORKING-STORAGE, LINKAGE
SECTION, LOCAL-STORAGE SECTION, variably-located areas, and
EXTERNAL data.

* File record contents.

*» WORKING-STORAGE, including the base locator for WORKING-STORAGE
(BLW) and program class storage.

198 2z/0S V1R5.0 Language Environment Debugging Guide

Storage for Active Routines:
COBDUMP2:
Contents of base Tocators for files are:
0-0004C038

Contents of base locators for working storage are:
0-0D423160

Contents of base locators for the Tinkage section are:
0-00000000 1-0D4230D8

No variably located areas were used in this program.
No EXTERNAL data was used in this program.

No object instance data were used in this program.
No Tocal storage was used in this program.

No DSA indexes were used in this program.

No indexes were used in this program.

File record contents for COBDUMP2

ESDS1DD (BLF-0): 0004C038
+000000 0004C038 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | ..'everrereereennennennennennns
+000020 0004C058 - +00OO3F 0004CO77 same as above

Working storage for COBDUMP2

BLW-0: 0D423160
+000000 0D423160 0OOOOOE7 E7E70000 OOESBES8E8 0OOOOOE9 EIEI0000 00000000 C3D6C2D6 D34OCAE4 |...XXX...YYY...ZZZ...... COBOL DU
+000020 ©D423180 D4D74040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 |MP
+000040 0D4231A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+000060 0D4231CO 40404040 40404040 40C2D3D6 C3D2E240 E2E3D6D9 C1C7C540 D7C1C7C5 4DF5F55D BLOCKS STORAGE PAGE(55)
+000080 OD4231EO0 40C6C9D3 C5E24040 40404040 40404040 40404040 40404040 40404040 40404040 FILES
+0000A0 0D423200 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+0000CO 0D423220 - +00015F OD4232BF same as above
+000160 0D4232CO 40404040 40404000 00000000 00000000 00000000 00000000 00000000 00000000 | eerrerierrernernenaennns

Program class storage: 0D423100
+000000 0D423100 000001DB 00000000 00000000 OD41F940 00000000 00000000 00000 00000000 |.............. 9 i
+000020 0D423120 C9C7E9E2 DIE3C3C4 00000000 0OO0OOO0 00000000 0000 00000000 00000000 [IGZSRTCD...vvreevireenineennnens
+000040 0D423140 E2E8E2D6 E4E34040 00000000 00000000 OE000000 00000000 OFOOOOOO 00000000 [SYSOUT ..vvueiiiirriiineennnnns
+000060 0D423160 0000OOE7 E7E70000 OOES8ESES 00000OE9 EIEION00 00000000 C3D6C2D6 D340CAE4 |...XXX...YYY...ZZZ...... COBOL DU
+000080 0D423180 DAD74040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 |MP
+0000A0 0D4231A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+0000CO 0D4231CO 40404040 40404040 40C2D3D6 C3D2E240 E2E3D6D9 C1C7C540 D7C1C7C5 4DF5F55D BLOCKS STORAGE PAGE(55)
+0000EO OD4231EO 40C6C9D3 C5E24040 40404040 40404040 40404040 40404040 40404040 40404040 FILES
+000100 0D423200 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+000120 0D423220 - +0001BF 0D4232BF same as above
+0001C0O 0D4232C0O 40404040 40404000 00000000 00000000 00000000 00000000 00000000 00000000 | eerrerrernernernennennns

Program class storage: 0D41F940
+000000 OD41F940 000OO1BE 00000000 0D423100 0004C028 C6C3C200 01020000 FFFFFFFF FFFFFFFF |oovvvnnnn.. FCB.vvrvvinnnnn
+000020 OD41F960 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 00000000 00000000 |.....vvtviiiiiiinneeeeeennnnnnns
+000040 OD41F980 00000000 00000000 00000000 8001BIEO 8001BIEO 800IBIEO 8D414938 8OOIBIED | ..uevevrureviueennneenineennnens
+000060 OD41F9A0 8001BIEO 8001BIEO 8D414938 00000000 00000000 0000000 000000 0OOOOOOD | ...uvevirrevirrenineennneennnens

+000080 OD41F9CO 00000000 00000000 00000000 00000 00000000 00000000 C3D6C2C4 EADADTF2 | vvveeiirrenineennnnnnns COBDUMP2
+0000A0 OD41F9EO C5E2C4E2 F1CAC440 00000000 00000000 00000000 0D302194 00000000 00000000 |ESDSIDD Meveennnn
+0000CO OD41FAGO 00000000 00000000 00000000 00000000 00000000 00000000 00008800 OOO000O0 |...vevvrreerirernrennnnnn hooo..

+0000EO OD41FA20 00000000 00000000 00000028 00000000 00000000 00000000 000000 00000000 | .v.ueervurerneennneennneennnens
+000100 OD41FA40 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [....eveeriiiniiiiieeeeennnnnnnnns

+000120 OD41FA60 - +0001BF OD41FAFF same as above
Program class storage: 0004C028
+000000 0004C028 0000003F 00000000 OD41F940 0OOOOOO0 00000000 00000000 OOOOOOO0 00000000 |.......... LN

+000020 0004C048 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | .vvveererrernrenireennneennnans

Figure 75. Storage for Active COBOL Programs

Enclave-level data
The Enclave Control Blocks section of the dump, shown in|Figure 76 on page 200|,
displays the following information:

Chapter 5. Debugging COBOL programs 199

* RUNCOM control block. The RUNCOM is a control block that is allocated by the
COBOL runtime to anchor enclave level resources. The RUNCOM is dumped for
IBM service personnel use.

» Storage for all run units

« COBOL control blocks FCB, FIB, and GMAREA. The FCB, FIB, and GMAREA
are control blocks used for COBOL file processing. These control blocks are
dumped for IBM service personnel use.

Enclave Control Blocks:

RUNCOM: 00047038

+000000 00047038
+000020 00047058
+000040 00047078
+000060 00047098

C3F3D9E4 D5C3D6D4
00000000 ©6D300100
00018A80 000181BC
00000000 000473A8

000002D8
00047328
00000000
00000000

04860000
00000000
000187FC
00000000

000159C8
00015AE8
00000000
00000000

00000001
00000000
00000000
FOFOFOFO

00005F78
00000000
00016A48
FOFOFOFO

00000000
00000000
00000000
0D41F6B8

9
....... Yeeerenr.....00000000..6.

Enclave Storage:

Rununit class storage: 000473A8
+000000 000473A8 000000CO 00000000
+000020 000473C8 00000000 00000000
+000040 000473E8 - +0000BF 00047467

Rununit class storage: OD41F6FO

00000000
00000000

OD41F6FO 00000000
00000000 00000000
same as above

00000000
00000000

00000000
00000000

00000000
00000000

+000000 OD41F6FO
+000020 OD41F710
+000040 OD41F730
+000060 OD41F750

00000248 00000000
00000000 00000000
00000000 00000000
05000000 42030220

000473A8
00000000
00000000
00047038

00047360
00000000
00000000
000187FC

00000000
00000000
00000000
0D41F920

00000000
00000000
00000000
00000001

00000000
00000000
F3E3C7E3
00000174

00000000
00000000
00000000
00000000

Rununit class storage: 00047360
+000000 00047360 00000040 00000000
+000020 00047380 84810000 0D301F68

Rununit class storage: OD41F2A0
+000000 OD41F2A0 00000448 00000000
+000020 OD41F2CO 00000000 00000000
+000040 OD41F2EO - +00031F OD41F5BF

OD41F6FO
0D41F700

0D41F2A0
00000000

C3D6C2C4
00000000

E4D4D7F2
0D41F5AC

00000100
0D41F6B8

00000000
00047328

00047360
00000000

0D41F068 C8C1E340
00000000 00000000
same as above

00000100
00000000

00000000 00000000 |.......uu.. - 0UHAT Ll
00000000 00000000 | ...ueererriiiiiiiiiiiiieaaaaa

Rununit class storage: 0D41F068

+000000 OD41F068
+000020 0D41F088
+000040 OD41FOA8
+000060 0D41FOC8

0000022C 00000000
00000000 00000000
00000000 00000000
05000000 60030220

0D41F2A0
00000000
00000000
00047038

00047318
00000000
00000000
000187FC

00000000
00000000
00000000
0D41F288

00000000
00000000
00000000
00000000

00000000
00000000
F3E3C7E3
00000064

00000000
00000000
00000000
00000000

Rununit class storage: 00047318
+000000 00047318 00000040 00000000 OD41FO68 ©OOOOOO0
+000020 00047338 94810000 8D300100 OD41FO78 00000000

C3D6C2C4
00000000

E4D4D7F1
OD41F5A8

00000100
0D41F6B8

00000000
00000000

File Control Blocks:
FCB for file ESDS1DD
+000000 OD41F950
+000020 OD41F970
+000040 OD41F990
+000060 ©D41F9BO
+000080 OD41F9DO
+0000A0 OD41F9FO
+0000CO OD41FA10

in program COBDUMP2: OD41F950
C6C3C200 01020000 FFFFFFFF FFFFFFFF
FFFFFFFF 00000000 00000000 00000000
8001BIEO 8001BIEO 8D414938 8001BIEO
00000000 00000000 00000000 66000000
00000000 00000000 C3D6C2C4 E4DAD7F2
00000000 0D302194 00000000 00OOEO00
00000000 00000000 00008800 00OOOOO0
+0000EO OD41FA30 00000000 00000000 00000000 60O
FIB for file ESDSIDD in program COBDUMP2: 0D302194
+000000 0D302194 (C6C9C200 0103C5E2 C4E2F1C4 C4400088
+000020 0D3021B4 00010000 00000000 00000000 0000000 00000000
+000040 0D3021D4 00000000 00000000 00000000 0000 00000000
+000060 0D3021F4 - +00007F 0D302213 same as above
+000080 0D302214 0000CID6 CO6E2E2F1 40404040 40404040 40404040
GMAREA for file ESDS1DD in program COBDUMP2: 00000000
+000000 00000000 Inaccessible storage.

FFFFFFFF
00000000
8001B9EO
00000000
C5E2C4E2
00000000
00000000
00000000

FFFFFFFF
00000000
8001B9EO
00000000
F1C4C440
00000000
00000000
00000000

FFFFFFFF
00000000
80414938
00000000
00000000
00000000
00000028
00000000

FFFFFFFF
8001B9EO
00000000
00000000
00000000
00000000
00000000
00000000

8080A000 00008000
00000000

00000000

00000000
0D30218D
00000000

00000028
00000000
00000000

40404040 40404040 40404040 |..IOFSS1

Figure 76. Enclave-Level Data for COBOL Programs

200 2z/0S V1R5.0 Language Environment Debugging Guide

Process-level data

The Process Control Block section of the dump, shown in [Figure 77} displays
COBOL process-level control blocks THDCOM, COBCOM, COBVEC, and ITBLK.

In a non-CICS environment, the ITBLK control block only appears when a VS
COBOL Il program is active. In a CICS environment, the ITBLK control block always
appears.

COBOL control blocks THDCOM, COBCOM, COBVEC and ITBLK are dumped for
IBM service personnel use.

Process Control Blocks:

THDCOM: 00018A80
+000000 00018A80 C3F3E3C8 C4C3D6D4 000001E8 81000000 00000100 00000000 00018108 000181BC [C3THDCOM...Ya.......ouun.. a...a.
+000020 00018AA0 00047038 00000000 C3D6C2C4 E4DAD7F1 00000000 00000000 00000000 00000000 COBDUMPL...ovvvvnninnn,
+000040 00018ACO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | ..v.eervirrevirernirennnrennnnnn
+000060 00018AEO - +00007F 00018AFF same as above

COBCOM: 00018108
+000000 00018108 C3F3C3D6 C2C3D6D4 00000978 FOF2FOF9 FOFOO000 00000000 00000000 00000000 |C3COBCOM....020900..............
+000020 00018128 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |eeeeeerrnnniiiieeeeeennnnnns
+000040 00018148 00000000 00000000 00000000 00000 00000000 60000000 906000D6 000I8IBC |...vveevireeiirreninnnnn, -.0..a.
+000060 00018168 000187FC 00000100 00820000 00000000 00008000 08000000 00018A80 00000000 |..g...... bovi

COBVEC: 000181BC

+000000 000181BC 0001843C 00018442 00018448 0001844E 00018454 0001845A 00018460 00018466 |..d...d...d...d+..d...d!..d-..d.
+000020 000181DC 0001846C 00018472 00018478 0001847E 00018484 0001848A 00018490 00018496 |..d%..d...d...d=..dd..d...d...do
+000040 000181FC 0001849C 000184A2 000184A8 OOO184AE 000184B4 000184BA 000184CO 000184C6 |..d...ds..dy..d...d...d...d...dF
+000060 0001821C 000184CC 000184D2 000184D8 O0O184DE 000184E4 OOO184EA 000184F0 000184F6 |..d...dK..dQ..d...dU..d...do..d6

Figure 77. Process-Level Control Blocks for COBOL Programs

Debugging example COBOL programs

The following examples help demonstrate techniques for debugging COBOL
programs. Important areas of the dump output are highlighted. Data unnecessary to
debugging has been replaced by vertical ellipses.

Subscript range error

[Figure 78 on page 202]illustrates the error of using a subscript value outside the
range of an array. This program was compiled with LIST, TEST(STMT,SYM), and
SSRANGE. The SSRANGE compiler option causes the compiler to generate code
that checks (during run time) for data that has been stored or referenced outside of
its defined area because of incorrect indexing and subscripting. The SSRANGE
option takes effect during run time, unless you specify CHECK(OFF) as a run-time
option.

The program was run with TERMTHDACT(TRACE) to generate the traceback
information shown in|Figure 79 on page 202,

Chapter 5. Debugging COBOL programs 201

CBL LIST,SSRANGE,TEST(STMT,SYM)
ID DIVISION.

PROGRAM-ID. COBOLX.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
PIC 9(4) USAGE COMP.
01 TABLE-X.
02 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES.

77 3

PROCEDURE DIVISION.
MOVE 9 TO J.

MOVE 1 TO SLOT (J).
GOBACK.

Figure 78. COBOL Example of Moving a Value Outside an Array Range

To understand the traceback information and debug this program, use the following

steps:

1. Locate the current error message in the Condition Information for Active
Routines section of the Language Environment traceback, shown in [Figure 79,
The message is 16GZ0006S The reference to table SLOT by verb number 01 on
line 000011 addressed an area outside the region of the table. The
message indicates that line 11 was the current COBOL statement when the

error occurred. For more information about this message, see [0S Language

[Environment Run-Time Messages,

2. Statement 11 in the traceback section of the dump occurred in program
COBOLX.

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition.

Information for enclave COBOLX

Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit
0002A768 CEEHDSP
0002A5D0 CEEHSGLT
0002A0B8 IGZCMSG
0002A018 COBOLX

PU Addr
0D3386F0
0D344250
0D400BF8
00007808

PU Offset
+00003032
+0000005C
+0000038C
+00000286

Condition Information for Active Routines

Condition Information for CEEHSGLT (DSA address 0002A5D0)

CIB Address: 0002ADEO
Current Condition:

Entry
CEEHDSP
CEEHSGLT
1GZCMSG
COBOLX

E Addr

0D3386F0
0D344250
0D400BF8
00007808

E Offset
+00003032
+0000005C
+0000038C
+00000286

08/30/01 11:48:58 AM Page: 1

Statement

11

Load Mod Service Status

CEEPLPKA Call
CEEPLPKA Exception
IGZCPAC Call
GO Call

16Z20006S The reference to table SLOT by verb number 01 on line 000011 addressed an area outside the region of the table.

Location:

Program Unit: CEEHSGLT Entry: CEEHSGLT Statement:
Storage dump near condition, beginning at Tocation: 0D34429C

+000000 0D34429C F010D20B DO8O100O 58A0C2B8 58FOAO1C O5EFD20B DO98B108 41A0DO98 50A0ODOSC

Offset: +0000005C

[0.Kuvonnns B..0....K..q..... . ..|

Figure 79. Sections of Language Environment Dump for COBOLX (Part 1 of 2)

202 2/0S V1R5.0 Language Environment Debugging Guide

Parameters, Registers, and Variables for Active Routines:

CEEHDSP (DSA address 0002A768) :
Saved Registers:

GPRO..... 0D33BB6C GPRI..... 0002AB80
GPR4..... 00000008 GPR5..... 0002ADEO
GPR8..... OD33B6ED GPRI..... OD33A6EE

GPR12.... 00019A48 GPR13.... 0002A768
GPREG STORAGE:
Storage around GPRO (OD33BB6C)

-0020 0D33BB4AC 0D33BB78 0D33BBBC OD33BB8O OD33BBCO 0OD33BBBO 00000000 00000001 00000002
+0000 OD33BB6C 00000003 00000004 00000006 00000007 00000008 00000009 000OO00A 0000000B
+0020 OD33BB8C 0000000D OOOOOOOE 000010 00000015 00000017 00000064 00000069 00000080

CEEHSGLT (DSA address 0002A5D0) :
Saved Registers:

GPRO..... 000079B8 GPRI..... 0002A290
GPR4..... 00020038 GPR5..... 00020038
GPR8..... 0001BA80 GPRI..... 00009140

GPR12.... 00019A48 GPRI13.... 0002A5D0
GPREG STORAGE:
Storage around GPRO (000079B8)

-0020 00007998 08000004 00224000 00000006 CO000140 00040800 00040028 02400002 08000004
+0000 000079B8 001FO3CO 00060800 0004001C 40000000 0040C000 01400006 08000004 002202C0
+0020 000079D8 00060800 00040022 183F4100 10A05500 COOCO5FO 47DOFOOC 58FOC300 O5EF181F

IGZCMSG (DSA address 0002A0BS8) :
Saved Registers:
GPRO..... 000079B8 GPRI..... 0002A290
GPR4..... 00020038 GPR5..... 00020038
GPR8..... 0001BA80 GPRI..... 00009140

GPR12.... 00019A48 GPRI13.... 0002A0B8
GPREG STORAGE:
Storage around GPRO (000079B8)

-0020 00007998 08000004 00224000 00000006 C0000140 00040800 00040028 02400002 08000004
+0000 000079B8 001FO3CO 00060800 0OO4001C 40000000 0040CO00 01400006 08000004 002202C0O
+0020 000079D8 00060800 00040022 183F4100 10A05500 COOCO5FO 47DOFOOC 58FOC300 O5EF181F

COBOLX (DSA address 0002A018):
Saved Registers:

GPRO..... 0002A0B8 GPRI..... 0000799E
GPR4..... 00007840 GPR5..... 00018AE8
GPR8..... 000093A0 GPRI..... 00009140

GPR12.... 00007904 GPR13.... 0002A018
GPREG STORAGE:
Storage around GPRO (0002A0B8)

-0020 0002A098 0D30021C 0D300218 0D300220 000179A4
+0000 0002A0B8 00101001 0002A018 0002A5D0 8002463E
+0020 0002A0D8 00000000 00020038 00020038 0002A3D4

Local Variables:

GPR2..... 00000001
GPR6..... 00020038
GPR10.... OD3396EF
GPR14.... 800210E2

GPR2..... 0002A290
GPR6..... 0002A3D4
GPR10.... 00020038
GPR14.... 800210CE

GPR2..... 0002A290
GPR6..... 0002A3D4
GPR10.... 0004A038
GPR14.... 8002463E

GPR2..... 00000010
GPR6..... 00000000
GPR10.... 00007910
GPR14.... 80007A90

677 3 9999 COMP 00009
7 01 TABLE-X AN-GR
8 02 SLOT 9999 OCCURS 8

SUB(1) comp 00000

GPR15

00000003
0002B767
.... 8D3386F0
.... 8D34E858

00000000
00000005

GPR11.... 8D344250
GPR15.... 8D343AA8

00000000
00000005

GPR11.... 8D40OBF8
GPR15.... 8D344250

GPR11....

0001B7FC
00000000
00007A3E

GPR15.... 8D400OBF8

00000000 00000000 00000000 00000000
80344250 000079B8 0002A290 0002A290
00000005 0001BA8O 00009140 0004A038

3. Find the statement on line 11 in the listing for program COBOLX, shown in

Figure 79. Sections of Language Environment Dump for COBOLX (Part 2 of 2)

[Figure 80 on page 204] This statement moves the 1 value to the array SLOT

().

Chapter 5. Debugging COBOL programs

203

PP 5648-A25 IBM COBOL for 0S/390 & VM 2.1.1 COBOLX Date 11/04/1999 Time 11:48:54 Page 3

LineID PL SL =---+=#A-1-Bmmtmmmm2mmmmtommm3mmmmdom oo b oo B b motm-o-7- [-—+----8 Map and Cross Reference
/* COBOLX

000001 ID DIVISION.

000002 PROGRAM-ID. COBOLX.

000003 ENVIRONMENT DIVISION.

000004 DATA DIVISION.

000005 WORKING-STORAGE SECTION.

000006 77 J PIC 9(4) USAGE COMP.

000007 01 TABLE-X.

000008 02 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES.

000009 PROCEDURE DIVISION.

000010 MOVE 9 TO J.

000011 MOVE 1 TO SLOT (J).

000012 GOBACK.

*/ COBOLX

Figure 80. COBOL Listing for COBOLX

4. Find the values of the local variables in the Parameters, Registers, and
Variables for Active Routines section of the traceback, shown in
[page 202 J, which is of type PIC 9(4) with usage COMP, has a 9 value. J is the
index to the array SLOT.

The array SLOT contains eight positions. When the program tries to move a
value into the J or 9th element of the 8-element array named SLOT, the error of
moving a value outside the area of the array occurs.

Calling a nonexistent subroutine

Figure 81|demonstrates the error of calling a nonexistent subroutine in a COBOL
program. In this example, the program COBOLY was compiled with the compiler
options LIST, MAP and XREF. The TEST option was also specified with the

suboptions NONE and SYM. [Figure 81| shows the program.

CBL LIST,MAP,XREF,TEST(NONE,SYM)
ID DIVISION.
PROGRAM-ID. COBOLY.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SUBNAME PIC X(8) USAGE DISPLAY VALUE 'UNKNOWN'.
PROCEDURE DIVISION.
CALL SUBNAME.
GOBACK.

Figure 81. COBOL Example of Calling a Nonexistent Subroutine

To understand the traceback information and debug this program, use the following
steps:

1. Locate the error message for the original condition under the Condition
Information for Active Routines section of the dump, shown in
[page 205 The message is CEE3501S The module UNKNOWN was not found. For
more information about this message, see|z/0S Language Environment
[Run-Time Messages|

2. Note the sequence of calls in the Traceback section of the dump. COBOLY
called IGZCFCC; IGZCFCC (a COBOL library subroutine used for dynamic

204 2/0S V1R5.0 Language Environment Debugging Guide

calls) called IGZCLDL; then IGZCLDL (a COBOL library subroutine used to load
library routines) called CEESGLT, a Language Environment condition handling
routine.

This sequence indicates that the exception occurred in IGZCLDL when

COBOLY was attempting to make a dynamic call. The call statement in
COBOLY is located at offset +00000338.

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 5:17:40 PM Page:
Information for enclave COBOLY
Information for thread 8000000000000000
Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002A5A8 CEEHDSP 0D3386F0 +000028DE CEEHDSP 0D3386F0 +000028DE CEEPLPKA Call
0002A410 CEEHSGLT 0D344250 +0000005C CEEHSGLT 0D344250 +0000005C CEEPLPKA Exception
0002A2A8 IGZCLDL OD3FF098 +0000011A IGZCLDL OD3FF098 +0000011A IGZCPAC Call
0002A0CO IGZCFCC 0001E128 +00000398 IGZCFCC 0001E128 +00000398 IGZCFCC Call
0002A018 COBOLY 000077E0 +00000338 COBOLY 000077E0 +00000338 8 GO Call
Condition Information for Active Routines
Condition Information for CEEHSGLT (DSA address 0002A410)
CIB Address: 0002AC20
Current Condition:
CEE0198S The termination of a thread was signaled due to an unhandled condition.
Original Condition:
CEE3501S The module UNKNOWN was not found.
Location:
Program Unit: CEEHSGLT Entry: CEEHSGLT Statement: Offset: +0000005C
Storage dump near condition, beginning at location: 0D34429C
+000000 0D34429C FO10D20B DO8O1000 58A0C2B8 58FOAOIC O5EFD20B DO9ISB1O8 41AODO9I8 50A0DOSC |0.K....... B..0....K..q..... q&...

1

Figure 82. Sections of Language Environment Dump for COBOLY

3. Use the offset of X'338' from the COBOL listing, shown in [Figure 83 on page]
206} to locate the statement that caused the exception in the COBOLY program.
At offset X'338' is an instruction for statement 8. Statement 8 is a call with the

identifier SUBNAME specified.

Chapter 5. Debugging COBOL programs

205

PP 5648-A25 IBM COBOL for 0S/390 & VM 2.1.1 COoBOLY Date 11/08/1999 Time 17:17:35 Page 11

0002A8 START EQU = CoBOLY
0002A8 183F LR 3,15
0002AA 4100 10A8 LA 0,168(0,1)
0002AE 5500 COOC CL 0,12(0,12)
0002B2 05F0 BALR 15,0
0002B4 47D0 FOOC BC 13,12(0,15)
0002B8 58F0 C300 L 15,768(0,12)
0002BC O5EF BALR 14,15
0002BE 181F LR 1,15
0002CO 50D0 1004 ST 13,4(0,1)
0002C4 5000 104C ST 0,76(0,1)
0002C8 D203 1000 3058 MVC 0(4,1),88(3)
0002CE 18D1 LR 13,1
0002D0 58CO 90E8 L 12,232(0,9) TGTFIXD+232
0002D4 1812 LR 1,2
0002D6 50D0 D058 ST 13,88(0,13)
0002DA 5090 DO5C ST 9,92(0,13)
0002DE 58A0 C004 L 10,4(0,12) CBL=1
0002E2 5880 9128 L 8,296(0,9) BLW=0
0002E6 D203 90EC A010 MVC 236(4,9),16(10) TGTFIXD+236 PGMLIT AT +8
0002EC BF2F 9208 ItM 2,15,520(9) IPCB=1+16
0002F0 58B0 C008 L 11,8(0,12) PBL=1
0002F4 4780 BOOO BC 8,0(0,11) GN=7(000306)
0002F8 5830 905C L 3,92(0,9) TGTFIXD+92
0002FC 58F0 30F4 L 15,244(0,3) V(IGZCMSG)
000300 4110 A180 LA 1,384(0,10) PGMLIT AT +376
000304 O5EF BALR 14,15
000306 GN=7 EQU =
000306 5A20 C0O0OO A 2,0(0,12) SYSLIT AT +0
00030A 5020 9208 ST 2,520(0,9) IPCB=1+16
00030E 9640 91F8 0I 504(9),X'40' IPCB=1
000008 *
000008 CALL
000312 D267 D098 8000 MVC 152(8,13),0(8) T52=0 SUBNAME
000318 DCO7 D698 AO1A TR 152(8,13),26(10) TS2=0 PGMLIT AT +18
00031E D203 DOAO Al15A MVC 160(4,13),346(10) TS2=8 PGMLIT AT +338
000324 4120 DO98 LA 2,152(0,13) TS2=0
000328 5020 DOA4 ST 2,164(0,13) TS2=12
00032C 4110 DOAO LA 1,160(0,13) TS2=8
000330 5820 905C L 2,92(0,9) TGTFIXD+92
000334 58F0 2100 L 15,256(0,2) V(IGZCFCC)
000338 O5EF BALR 14,15
00033A 5830 9124 L 3,292(0,9) BL=1
00033E 40F0 3000 STH 15,0(0,3) RETURN-CODE
000009 GOBACK
000342 47F0 BO52 BC 15,82(0,11) GN=2(000358)
000346 9120 9054 ™ 84(9),Xx'20' TGTFIXD+84
00034A 47EO BO52 BC 14,82(0,11) GN=2(000358)
00034E 58F0 20F4 L 15,244(0,2) V(IGZCMSG)
000352 4110 Al6E LA 1,366(0,10) PGMLIT AT +358
000356 O5EF BALR 14,15
000358 GN=2 EQU =
000358 5840 9208 L 4,520(0,9) IPCB=1+16
00035C 5B40 C000 S 4,0(0,12) SYSLIT AT +0
000360 5040 9208 ST 4,520(0,9) IPCB=1+16
000364 9140 9055 ™ 85(9),x'40" TGTFIXD+85
000368 47E0 BO70 BC 14,112(0,11) GN=8(000376)
00036C 4110 0008 LA 1,8(0,0)
000370 58F0 2020 L 15,32(0,2) V(IGZCCTL)
000374 O5EF BALR 14,15
000376 GN=8 EQU =
000376 9128 9054 ™ 84(9),x'28' TGTFIXD+84
00037A 4770 BO8A BC 7,138(0,11) GN=9(000390)
00037E 48F0 3000 LH 15,0(0,3) RETURN-CODE
000382 58D0 DOO4 L 13,4(0,13)
000386 58E0 DOOC L 14,12(0,13)
00038A 980C D014 M 0,12,20(13)
00038E O7FE BCR 15,14

Figure 83. COBOL Listing for COBOLY (Part 1 of 2)

206 2z/0S V1R5.0 Language Environment Debugging Guide

000390

000390 D20B D098 Al4E
000396 4840 3000
00039A 5040 DOA4
00039E 4110 DO98
0003A2 58F0 2224
0003A6 O5EF

GN=9 EQU =

MVC 152(12,13),334(10)
LH 4,0(0,3)

ST 4,164(0,13)

LA 1,152(0,13)

L 15,548(0,2)

BALR 14,15

152=0
RETURN-CODE
152=12
752=0
V(IGZETRM)

PGMLIT AT +326

Figure 83. COBOL Listing for COBOLY (Part 2 of 2)

4. Find the value of the local variables in the Parameters, Registers, and Variables

for Active Routines section of the dump, shown in

Notice that the

value of SUBNAME with usage DISP, has a value of 'UNKNOWN'.

Correct the problem by either changing the subroutine name to one that is
defined, or by ensuring that the subroutine is available at compile time.

Parameters, Registers, and Variables for Active Routines:

COBOLY (DSA address 0002A018):

Saved Registers:

GPRO..... 0002A0CO
GPR4..... 00007818
GPR8..... 000093B0

GPR12.... 000078DC
GPREG STORAGE:

GPRI..... 0002A0B8
GPR5..... 00018AE8
GPRI..... 00009150

GPR13.... 0002A018

Storage around GPRO (0002A0CO)

-0020 0002A0A0 0D300220 000179A4 00000000 00000000 E4D5D2D5 D6E6D540 A2080000 0002A0BO
+0000 0002A0CO 00102001 0002A018 00000000 8001E4C2 8D3FFO98 0002A2A8 0002A260 0001B7FC
+0020 0002A0EO 000077E0 0002A0B8 0001B7FC 00000000 0002A250 0001BA8O 00009150 0004A038

Local Variables:
6 77 SUBNAME

X(8) DISP

GPR2..... 0001B7FC
GPR6..... 00000000
GPR10.... 000078E8
GPR14.... 80007B1A

'UNKNOWN '

GPR3..... 000077E0
GPR7..... 00000000
GPR11.... 00007AE6

GPR15.... 8001E128

....... U.owonn. .UNKNOWN s.......
.............. UB..0g..sy..s-...
.................. s&......j&.

Figure 84. Parameters, Registers, and Variables for Active Routines Section of Dump for COBOLY

Divide-by-zero error

The following example demonstrates the error of calling an assembler routine that
tries to divide by zero. Both programs were compiled with TEST(STMT,SYM) and
run with the TERMTHDACT(TRACE) run-time option. [Figure 85 on page 208| shows
the main COBOL program (COBOLZ1), the COBOL subroutine (COBOLZ2), and
the assembler routine.

Chapter 5. Debugging COBOL programs

207

208

[Main Program]

CBL TEST(STMT,SYM),DYN,XREF(FULL) ,MAP

ID DIVISION.

PROGRAM-ID. COBOLZ1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 D-VAL PIC 9(4) USAGE COMP VALUE 0.

PROCEDURE DIVISION.
CALL "COBOLZ2" USING D-VAL.
GOBACK.

[Subroutine]

CBL TEST(STMT,SYM),DYN,XREF(FULL) ,MAP

ID DIVISION.

PROGRAM-ID. COBOLZZ2.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 DV-VAL PIC 9(4) USAGE COMP.

LINKAGE SECTION.

77 D-VAL PIC 9(4) USAGE COMP.

PROCEDURE DIVISION USING D-VAL.
MOVE D-VAL TO DV-VAL.
CALL "ASSEMZ3" USING DV-VAL.
GOBACK.

[Assembler Routine]

PRINT NOGEN
ASSEMZ3 CEEENTRY MAIN=NO,PPA=MAINPPA

LA 5,2348 Low order part of quotient
SR 4,4 Hi order part of quitient
L 6,0(1) Get pointer to divisor
LA 6,0(6) Clear hi bit
D 4,0(6) Do division
CEETERM RC=0 Terminate with return code zero
*
MAINPPA CEEPPA Constants describing the code block
CEEDSA Mapping of the Dynamic Save Area
CEECAA Mapping of the Common Anchor Area

END ASSEMZ3

Figure 85. Main COBOL Program, COBOL Subroutine, and Assembler Routine

To debug this application, use the following steps:

1. Locate the error message for the current condition in the Condition Information
section of the dump, shown in|Figure 86 on page 209, The message is
CEE3209S The system detected a fixed-point divide exception (System
Completion Code=0C9).

For additional information about this message, see (zZ0S Language Environment
[Run-Time Messages|
2. Note the sequence of calls in the call chain. COBOLZ1 called IGZCFCC, which

is a COBOL library subroutine used for dynamic calls; IGZCFCC called
COBOLZ2; COBOLZ2 then called IGZCFCC; and IGZCFCC called ASSEMZS3.

z/OS V1R5.0 Language Environment Debugging Guide

The exception occurred at this point, resulting in a call to CEEHDSP, a
Language Environment condition handling routine.

The call to ASSEMZ3 occurred at statement 11 of COBOLZ2. The exception
occurred at offset +64 in ASSEMZ3.

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition.

Information for enclave COBOLZ1

Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset
0002A5EQ CEEHDSP 0D3386F0 +00003032
0002A560 ASSEMZ3 00315048 +00000064
0002A378 1GZCFCC 0001E128 +00000270
0002A2C0 COBOLZ2 0004C758 +0000026E
0002A0D8 IGZCFCC 0001E128 +00000270
0002A018 COBOLZ1 000077C0 +00000258

Condition Information for Active Routines

Condition Information for ASSEMZ3 (DSA address 0002A560)

CIB Address: 0002AC58
Current Condition:

08/30/01 12:13:36 PM

Page:

CEE3209S The system detected a fixed-point divide exception (System Completion Code=0C9).

Location:

Program Unit: ASSEMZ3 Entry: ASSEMZ3 Statement:

Machine State:

ILC..... 0004 Interruption Code.....
PSW..... 07800000 8D3150B0

GPRO..... 0002A5EQ GPRI..... 0002A360
GPR4..... 00000000 GPRS5..... 0000092C
GPRS..... 00000000 GPR9..... 0004E148

GPR12.... 00019A48 GPR13.... 0002A560

Storage dump near condition, beginning at location: 0D31509C

+000000 0D31509C

Parameters, Registers, and Variables for Active Routines:

C0BOLZ2 (DSA address 0002A2C0) :
Saved Registers:

GPRO..... 0002A378 GPRI..... 0002A368
GPR4..... 0002A360 GPR5..... 0001B1BC
GPR8..... 0004E3BO GPRI..... 0004E148

GPR12.... 0004C854 GPR13.... 0002A2C0O
GPREG STORAGE:
Storage around GPRO (0002A378)

-0020 0002A358 0002A378 OD41ABA8 8004E3BO 00000000

GPR2..... 0001B7FC
GPR6..... 0004A370
GPR10.... 0004C860
GPR14.... 8004C9C8

GPR3..... 0004E27C
GPR7..... 00FCABOO
GPR11.... 0004C96E
GPR15.... 8001E128

96080000 0004C870 0004E27C 0002A360

1

Entry E Addr E Offset Statement Load Mod Service Status
CEEHDSP 0D3386F0 +00003032 CEEPLPKA Call
ASSEMZ3 00315048 +00000064 ASSEMZ3 Exception
IGZCFCC 0001E128 +00000270 1GZCFCC Call
CoBOLZ2 0004C758 +0000026E 11 CcoBOLZ2 Call
IGZCFCC 0001E128 +00000270 IGZCFCC Call
COBOLZ1 000077CO0 +00000258 8 GO Call
O0ffset: +00000064
0009
GPR2..... 0D41AA84 GPR3..... 0004E27C
GPR6..... 0004E3BO GPR7..... 0002A360
GPR10.... 0004A038 GPR11.... 8D315048
GPR14.... 8001E39A GPR15.... 8D315048
10184150 ©92C1B44 58610000 41660000 5D460000 58FOBOFO 5800BOFO 58DD00O4 |...&..... [eeenn.)....0.0...0....

+0000 0002A378 00102401 0002A2CO 0002A560 8001E39A 8D315048 0002A560 0002A360 OD41AA8E |...... Se. V- To 8.Vl t-
+0020 0002A398 0004E27C 0002A368 BOO4E27C HO04A3B8 0002A360 00000000 O004E148 0004A038 SB..t.. SO teuiteeiieiaaanas
Loca] Variables:
6 77 DV-VAL 9999 COMP 00000
8 77 D-VAL 9999 COMP 00000
COBOLZ1 (DSA address 0002A018):
Saved Registers:
GPRO..... 0002A0D8 GPRI..... 0002A0C8 GPR2..... 0001B7FC GPR3..... 00009280
GPR4..... 0002A0CO GPR5..... 00018AE8 GPR6..... 00000000 GPR7..... 00000000
GPRS..... 00009380 GPR9..... 00009150 GPR10.... 000078C8 GPR11.... ©00079CE
GPR12.... 000078BC GPR13.... 0002A018 GPR14.... 80007A1A GPR15.... 8001E128
GPREG STORAGE:
Storage around GPRO (0002A0D8)
-0020 0002A0B8 00000000 HOOAOOOO 800093BO 00OONOOO 96080000 HOOA78DC 00009280 0002A0CO |.......... Touuns Orrernnnnn Kevuns
+0000 0002A0D8 00102401 0002A018 0002A2CO 8001E39A 0004C758 0002A2CO 0002A0CO OOOIB7FC |.......... SeviTeeiGueaSeennnnnns
+0020 0002A0F8 00009280 0002A0C8 00009280 HO04A370 ©002AOCO 00000000 00009150 0004A038 |..k....H..K..it.eer.enn... i&
Local Variables:
6 77 D-VAL 9999 COMP 00000
Figure 86. Sections of Language Environment Dump for Program COBOLZ1
Chapter 5. Debugging COBOL programs 209

3. Locate statement 11 in the COBOL listing for the COBOLZ2 program, shown in
[Figure 87 This is a call to the assembler routine ASSEMZ3.

PP 5648-A25 IBM COBOL for 0S/390 & VM 2.1.1 COBOLZ2 Date 11/04/1999 Time 12:13:28 Page 3
LineID PL SL =--=t=%A-1-Bomtmmmo@mmombomm3mm ot ool m oo Bt fmmo—#-—=-7- | -—+----8 Map and Cross Reference
/* COBOLZ2
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLZ2.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 77 DV-VAL PIC 9(4) USAGE COMP. BLW=0000+000 2C
000007 LINKAGE SECTION.
000008 77 D-VAL PIC 9(4) USAGE COMP. BLL=0001+000 2C
000009 PROCEDURE DIVISION USING D-VAL. 8
000010 MOVE D-VAL TO DV-VAL. 86
000011 CALL "ASSEMZ3" USING DV-VAL. EXT 6
000012 GOBACK.

*/ COBOLZ2

Figure 87. COBOL Listing for COBOLZ2

4. Check offset +64 in the listing for the assembler routine ASSEMZ3, shown in
[Figure 84
This shows an instruction to divide the contents of register 4 by the variable
pointed to by register 6. You can see the two instructions preceding the divide
instruction load register 6 from the first word pointed to by register 1 and
prepare register 6 for the divide. Because of linkage conventions, you can infer
that register 1 contains a pointer to a parameter list that passed to ASSEMZ3.
Register 6 points to a 0 value because that was the value passed to ASSEMZ3
when it was called by a higher level routine.

Note: To translate assembler instructions, see z/Architecture™ Principles of
Operation, SA22-7832.

IBMC HLASM Option Summary IBMC (PTF R3PLUS9) Page 1
HLASM R3.0 1999/11/04 12.13
IBMC External Symbols IBMC Page 2
Symbol Type Id Address Length LD ID Flags Alias-of HLASM R3.0 1999/11/04 12.13
ASSEMZ3 SD 00000001 00000000 00000OF4 07
CEESTART ER 00000002
CEEBETBL ER 00000003
Page 3
Active Usings: None
Loc Object Code Addrl Addr2 Stmt Source Stmt IBMC HLASM R3.0 1999/11/04 12.13
1 PRINT NOGEN
000000 47F0 FO14 00014 2 ASSEMZ3 CEEENTRY MAIN=NO,PPA=MAINPPA
000056 4150 092C 0092C 37 LA 5,2348 Low order part of quotient
00005A 1B44 38 SR 4,4 Hi order part of quitient
00005C 5861 0000 00000 39 L 6,0(1) Get pointer to divisor
000060 4166 0000 00000 40 LA 6,0(6) Clear hi bit
000064 5D46 0000 00000 41 D 4,0(6) Do division
000068 58F0 BOFO 000FO 42 CEETERM RC=0 Terminate with return code zero
49 *
000080 10 50 MAINPPA CEEPPA Constants describing the code block
116+*,Time Stamp = 1999/11/04 12:13:00 01-CEEPP
117+%,Version 1 Release 1 Modification 0 01-CEEPP
128 CEEDSA Mapping of the Dynamic Save Area
173 CEECAA Mapping of the Common Anchor Area
000000 376 END ASSEMZ3
0000FO 00000000 377 =A(0)

Figure 88. Listing for ASSEMZ3

5. Check local variables for COBOLZ2 in the Local Variables section of the dump
shown in |Figure 89 on page 211[From the dump and listings, you know that

210 2z/0S V1R5.0 Language Environment Debugging Guide

COBOLZ2 called ASSEMZ3 and passed a parameter in the variable DV-VAL.
The two variables DV-VAL and D-VAL have 0 values.

Local Variables:
6 77 DV-VAL 9999 COMP 00000
8 77 D-VAL 9999 COMP 00000

Figure 89. Variables Section of Language Environment Dump for COBOLZ2

6. In the COBOLZ2 subroutine, the variable D-VAL is moved to DV-VAL, the
parameter passed to the assembler routine. D-VAL appears in the Linkage
section of the COBOLZ2 listing, shown in indicating that the value did
pass from COBOLZ1 to COBOLZ2.

PP 5648-A25 IBM COBOL for 0S/390 & VM 2.1.1 COBOLZ2 Date 11/04/1999 Time 12:13:28 Page 3
LineID PL SL ==-=#=%A-1-Bomtmm=-2omombomm3mmmmbomoobom oo e 5ot fmmo—#-——-7- | -—+----8 Map and Cross Reference
/* COBOLZ2
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLZ2.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 77 DV-VAL PIC 9(4) USAGE COMP. BLW=0000+000 2C
000007 LINKAGE SECTION.
000008 77 D-VAL PIC 9(4) USAGE COMP. BLL=0001+000 2C
000009 PROCEDURE DIVISION USING D-VAL. 8
000010 MOVE D-VAL TO DV-VAL. 86
000011 CALL "ASSEMZ3" USING DV-VAL. EXT 6
000012 GOBACK.
*/ COBOLZ2

Figure 90. Listing for COBOLZ2

7. In the Local Variables section of the dump for program COBOLZ1, shown in
, D-VAL has a 0 value. This indicates that the error causing a
fixed-point divide exception in ASSEMZ3 was actually caused by the value of
D-VAL in COBOLZ1.

Local Variables:
6 77 D-VAL 9999 COMP 00000

Figure 91. Variables Section of Language Environment Dump for COBOLZ1

Chapter 5. Debugging COBOL programs 211

212 2/0S V1R5.0 Language Environment Debugging Guide

Chapter 6. Debugging FORTRAN routines

This chapter provides information to help you debug applications that contain one or
more FORTRAN routines. It includes the following topics:

» Determining the source of errors in FORTRAN routines

» Using FORTRAN compiler listings

» Generating a Language Environment dump of a FORTRAN routine

* Finding FORTRAN information in a dump

« Examples of debugging FORTRAN routines

Determining the source of errors in FORTRAN routines

Most errors in FORTRAN routines can be identified by the information provided in
FORTRAN run-time messages, which begin with the prefix FOR.

The FORTRAN compiler cannot identify all possible errors. The following list

identifies several errors not detected by the compiler that could potentially result in

problems:

» Failing to assign values to variables and arrays before using them in your
program.

» Specifying subscript values that are not within the bounds of an array. If you
assign data outside the array bounds, you can inadvertently destroy data and
instructions.

* Moving data into an item that is too small for it, resulting in truncation.

* Making invalid data references to EQUIVALENCE items of differing types (for
example, integer or real).
» Transferring control into the range of a DO loop from outside the range of the

loop. The compiler issues a warning message for all such branches if you specify
OPT(2), OPT(3), or VECTOR.

» Using arithmetic variables and constants that are too small to give the precision
you need in the result. For example, to obtain more than 6 decimal digits in
floating-point results, you must use double precision.

» Concatenating character strings in such a way that overlap can occur.

» Trying to access services that are not available in the operating system or
hardware.

» Failing to resolve name conflicts between FORTRAN and C library routines using
the procedures described in|z/OS Language Environment Programming Guide|

Identifying run-time errors

FORTRAN has several features that help you find run-time errors. FORTRAN
run-time messages are discussed in |zZ0S Language Environment Run-Time|
Other debugging aids include the optional traceback map, program
interruption messages, abnormal termination dumps, and operator messages.

* The optional traceback map helps you identify where errors occurred while
running your application. The TERMTHDACT(TRACE) run-time option, which is
set by default under Language Environment, generates a dump containing the
traceback map.

You can also get a traceback map at any point in your routine by invoking the
ERRTRA subroutine.

© Copyright IBM Corp. 1991, 2004 213

214

Program interruption messages are generated whenever the program is
interrupted during execution. Program interruption messages are written to the
Language Environment message file.

The program interruption message indicates the exception that caused the
termination; the completion code from the system indicates the specification or
operation exception resulting in termination.

Program interruptions causing an abnormal termination produce a dump, which
displays the completion code and the contents of registers and system control
fields.

To display the contents of main storage as well, you must request an abnormal
termination (ABEND) dump by including a SYSUDUMP DD statement in the
appropriate job step. The following example shows how the statement can be
specified for IBM-supplied cataloged procedures:

//GO.SYSUDUMP DD SYSOUT=A

You can request various dumps by invoking any of several dump service routines
while your program runs. These dump service routines are discussed in
“Generating a Language Environment dump of a FORTRAN routine” on pagel
215,

Operator messages are displayed when your program issues a PAUSE or STOP
n statement. These messages help you understand how far execution has
progressed before reaching the PAUSE or STOP statement.

The operator message can take the following forms:

n String of 1-5 decimal digits you specified in the PAUSE or STOP
statement. For the STOP statement, this number is placed in
R15.

‘message’ Character constant you specified in the PAUSE or STOP
statement.

0 Printed when a PAUSE statement containing no characters is

executed (not printed for a STOP statement).

A PAUSE message causes the program to stop running pending an operator
response. The format of the operator’s response to the message depends on the
system being used.

Under Language Environment, error messages produced by Language
Environment and FORTRAN are written to a common message file. Its ddname
is specified in the MSGFILE run-time option. The default ddname is SYSOUT.

FORTRAN information directed to the message file includes:

— Error messages resulting from unhandled conditions

— Printed output from any of the dump services (SDUMP, DUMP/PDUMP,
CDUMP/CPDUMP)

— Output produced by a WRITE statement with a unit identifier having the same
value as the FORTRAN error message unit

— Output produced by a WRITE statement with * given as the unit identifier
(assuming the FORTRAN error message unit and standard print unit are the
same unit)

— Output produced by the PRINT statement (assuming the FORTRAN error
message unit and the standard print unit are the same unit)

For more information about handling message output using the Language
Environment MSGFILE run-time option, see|z/OS Language Environment
[Programming Guide,

z/OS V1R5.0 Language Environment Debugging Guide

Using FORTRAN compiler listings

FORTRAN listings provide you with:

* The date of compilation including information about the compiler

» Alisting of your source program

» Diagnostic messages telling you of errors in the source program

* Informative messages telling you the status of the compilation

The following table contains a list of the contents of the various compiler-generated
listings that you might find helpful when you use information in dumps to debug
FORTRAN programs.

Table 20. Compiler-generated FORTRAN Listings and Their Contents

Compiler
Name Contents Option
Diagnostic message | Error messages detected during compilation. FLAG
listing
Source program Source program statements. SOURCE
Source program Source program statements and error messages. SRCFLG

Storage map and
cross reference

Variable use, statement function, subprogram, or
intrinsic function within a program.

MAP and XREF

Cross reference Cross reference of names with attributes. XREF
Source program map | Offsets of automatic and static internal variables MAP
(from their defining base).
Object code Contents of the program control section in LIST
hexadecimal notation and translated into a
pseudo-assembler format. To limit the size of the
object code listing, specify the statement or range of
statements to be listed; for example, LIST(20) or
LIST(10,30).
Variable map, object | Same as MAP and LIST options above, plus MAP and LIST
code, static storage | contents of static internal and static external control
sections in hexadecimal notation with comments.
Symbolic dump Internal statement numbers, sequence numbers, and | SDUMP

symbol (variable) information.

Generating a Language Environment dump of a FORTRAN routine

To generate a dump containing FORTRAN information, call either DUMP/PDUMP,
CDUMP/CPDUMP, or SDUMP.

DUMP/PDUMP and CDUMP/CPDUMP produce output that is unchanged from the
output generated under FORTRAN. Under Language Environment, however, the
output is directed to the message file.

When SDUMP is invoked, the output is also directed to the Language Environment
message file. The dump format differs from other FORTRAN dumps, however,
reflecting a common format shared by the various HLLs under Language
Environment.

Chapter 6. Debugging FORTRAN routines 215

You cannot make a direct call to CEE3DMP from a FORTRAN program. It is
possible to call CEE3DMP through an assembler routine called by your FORTRAN
program. FORTRAN programs are currently restricted from directly invoking
Language Environment callable services.

DUMP/PDUMP
Provides a dump of a specified area of storage.

CDUMP/CPDUMP
Provides a dump of a specified area of storage in character format.

SDUMP
Provides a dump of all variables in a program unit.

DUMP/PDUMP subroutines

216

The DUMP/PDUMP subroutine dynamically dumps a specified area of storage to
the system output data set. When you use DUMP, the processing stops after the
dump; when you use PDUMP, the processing continues after the dump.

Syntax
FCALL {DUMP | PDUMP} (a4, by,kq, as,bs, k,...)

a and b
Variables in the program unit. Each indicates an area of storage to be dumped.
Either a or b can represent the upper or lower limit of the storage area.

k The dump format to be used. The values that can be specified for k, and the
resulting dump formats, are:

Value Format Requested
Hexadecimal
LOGICAL*1
LOGICAL*4
INTEGER*2
INTEGER*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
CHARACTER
10 REAL*16

1 COMPLEX*32
12 UNSIGNED*1
13 INTEGER*1
14 LOGICAL*2
15 INTEGER*8
16 LOGICAL*8

Usage considerations for DUMP/PDUMP

A load module or phase can occupy a different area of storage each time it is
executed. To ensure that the appropriate areas of storage are dumped, the
following conventions should be observed.

©CoOoONOOCGOA~,WN=0

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in common, B is a real number, and

z/OS V1R5.0 Language Environment Debugging Guide

TABLE is an array of 20 elements. The following call to the storage dump routine
could be used to dump TABLE and B in hexadecimal format, and stop the program
after the dump is taken:

CALL DUMP(TABLE(1),TABLE(20),0,B,B,0)

If an area of storage in common is to be dumped at the same time as an area of
storage not in common, the arguments for the area in common should be given
separately. For example, the following call to the storage dump routine could be
used to dump the variables A and B in REAL*8 format without stopping the
program:

CALL PDUMP(A,A,6,B,B,6)

If variables not in common are to be dumped, each variable must be listed
separately in the argument list. For example, if R, P, and Q are defined implicitly in
the program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables in REAL*4 format. If the statement
CALL PDUMP(R,Q,5)

is used, all main storage between R and Q is dumped, which might or might not
include P, and could include other variables.

CDUMP/CPDUMP subroutines

The CDUMP/CPDUMP subroutine dynamically dumps a specified area of storage
containing character data. When you use CDUMP, the processing stops after the
dump; when you use CPDUMP, the processing continues after the dump.

Syntax
FCALL {CDUMP | CPDUMP} (a,, by, a,, bs,...)

aand b
Variables in the program unit. Each indicates an area of storage to be dumped.
Either a or b can represent the upper or lower limit of each storage area.

The dump is always produced in character format. A dump format type (unlike for
DUMP/PDUMP) must not be specified.

Usage considerations for COUMP/CPDUMP

A load module can occupy a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped, the following conventions
should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that B is a character variable and TABLE is a character array
of 20 elements. The following call to the storage dump routine could be used to
dump TABLE and B in character format, and stop the program after the dump is
taken:

CALL CDUMP(TABLE(1), TABLE(20), B, B)

Chapter 6. Debugging FORTRAN routines 217

SDUMP subroutine

218

The SDUMP subroutine provides a symbolic dump that is displayed in a format
dictated by variable type as coded or defaulted in your source. Data is dumped to
the error message unit. The symbolic dump is created by program request, on a
program unit basis, using CALL SDUMP. Variables can be dumped automatically
after abnormal termination using the compiler option SDUMP. For more information
on the SDUMP compiler option, see VS FORTRAN Version 2 Programming Guide

for CMS and MVS.

ltems displayed are:

All referenced, local, named, and saved variables in their FORTRAN-defined data
representation

All variables contained in a static common area (blank or named) in their
FORTRAN-defined data representation

All variables contained in a dynamic common area in their FORTRAN-defined
data representation

Nonzero or nonblank character array elements only
Array elements with their correct indexes

The amount of output produced can be very large, especially if your program has
large arrays, or large arrays in common blocks. For such programs, you might want
to avoid calling SDUMP.

Syntax
FCALL SDUMP [(rtn,,rtns,...)]

rtny,rtNy,...

Names of other program units from which data will be dumped. These names
must be listed in an EXTERNAL statement.

Usage considerations for SDUMP

To obtain symbolic dump information and location of error information,
compilation must be done either with the SDUMP option or with the TEST option.

Calling SDUMP and specifying program units that have not been entered gives
unpredictable results.

Calling SDUMP with no parameters produces the symbolic dump for the current
program unit.

An EXTERNAL statement must be used to identify the names being passed to
SDUMP as external routine names.

At higher levels of optimization (1, 2, or 3), the symbolic dump could show
incorrect values for some variables because of compiler optimization techniques.

Values for uninitialized variables are unpredictable. Arguments in uncalled
subprograms or in subprograms with argument lists shorter than the maximum
can cause the SDUMP subroutine to fail.

The display of data can also be invoked automatically. If the run-time option
TERMTHDACT(DUMP) is in effect and your program abends in a program unit
compiled with the SDUMP option or with the TEST option, all data in that
program unit is automatically dumped. All data in any program unit in the save
area traceback chain compiled with the SDUMP option or with the TEST option is
also dumped. Data occurring in a common block is dumped at each occurrence,
because the data definition in each program unit could be different.

z/OS V1R5.0 Language Environment Debugging Guide

Examples of calling SDUMP from the main program and from a subprogram follow.
Figure 92 on page 220|shows a sample program calling SDUMP and
page 221|shows the resulting output that is generated. In the main program, the
statement

EXTERNAL PGM1,PGMZ,PGM3

makes the address of subprograms PGM1, PGM2, and PGMS3 available for a call to
SDUMP as follows:

CALL SDUMP (PGM1,PGM2,PGM3)
This causes variables in PGM1, PGM2, and PGMS to be printed.

In the subprogram PGM1, the statement
EXTERNAL PGM2,PGM3

makes PGM2 and PGM3 available. (PGM1 is missing because the call is in PGM1.)
The statements

CALL SDUMP

CALL SDUMP (PGM2,PGM3)

dump variables PGM1, PGM2, and PGMS3.

Chapter 6. Debugging FORTRAN routines 219

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

IF DO

OPTIONS IN EFFECT:

IF DO

OPTIONS IN EFFECT:

IF DO

OPTIONS IN EFFECT:

IF DO

ISN

OCoONOOTH WN =

ISN

— =
H OWORONOOLHWN -

ISN

YOS WN

ISN

Gl &S WN -

*.-

*

*,

NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)

F [T [7o%eenin. 8

PROGRAM FORTMAIN
EXTERNAL PGMI,PGM2,PGM3
INTEGER*4 ANY_INT
INTEGER*4 INT_ARR(3)
CHARACTER*20 CHAR_VAR
ANY_INT = 555
INT_ARR(1) = 1111
INT_ARR(2) = 2222
INT_ARR(3) = 2222
CHAR VAR = 'SAMPLE CONSTANT
CALL PGM1 (ANY_INT,CHAR_VAR)
CALL SDUMP(PGM1,PGM2,PGM3)
STOP
END
LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(x) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(GO) CHARLEN(500) NAME (MAIN#)

SUBROUTINE PGM1(ARG1,ARG2)
EXTERNAL PGM2,PGM3
INTEGER*4 ARG1
CHARACTER*20 ARG2
ARGI =1
ARG2 = 'ARGUMENT'
CALL PGM2
CALL SDump
CALL SDUMP(PGM2,PGM3)
RETURN
END
LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)

O [K N 4ol S5eiiiiiitn 6.t To*eoiaan. 8

SUBROUTINE PGM2
INTEGER*4 PGM2VAR
PGM2VAR = 555
CALL PGM3
RETURN
END
LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)

R 2iiiiiinn K N 4ol Seiiiiiinn 6.t To*eeioan. 8

SUBROUTINE PGM3
CHARACTER*20 PGM3VAR
PGM3VAR = 'PGM3 VAR'
RETURN

END

Figure 92. Example Program That Calls SDUMP

220

Figure 93 on page 221|shows the resulting output generated by the example in

Figure 92|

z/OS V1R5.0 Language Environment Debugging Guide

Parameters, Registers, and Variables for Active Routines:

PGM1 (DSA address 06D004C8) :

Parameters:
ARG2 CHARACTER*20 ARGUMENT
ARG1 INTEGER*4 1

Local Variables:
Parameters, Registers, and Variables for Active Routines:

PGM2 (DSA address 000930FC):
Parameters:
Local Variables:

PGM2VAR INTEGER*4 555
Parameters, Registers, and Variables for Active Routines:
PGM3 (DSA address 000930FC) :

Parameters:
Local Variables:

PGM3VAR CHARACTER*20 PGM3 VAR
Parameters, Registers, and Variables for Active Routines:
PGM1 (DSA address 000930FC):

Parameters:
ARG2 CHARACTER=*20 ARGUMENT
ARG1 INTEGER*4 1

Local Variables:
Parameters, Registers, and Variables for Active Routines:

PGM2 (DSA address 000930FC) :
Parameters:
Local Variables:

PGM2VAR INTEGER*4 555
Parameters, Registers, and Variables for Active Routines:
PGM3 (DSA address 000930FC):

Parameters:
Local Variables:
PGM3VAR CHARACTER*20 PGM3 VAR

Figure 93. Language Environment Dump Generated Using SDUMP

Finding FORTRAN information in a Language Environment dump

To locate FORTRAN-specific information in a Language Environment dump, you
must understand how to use the traceback section and the section in the symbol
table dump showing parameters and variables.

Chapter 6. Debugging FORTRAN routines 221

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 10:32:56 AM Page: 1
Information for enclave SAMPLE

Information for thread 8000000000000000

[1]
Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002D018 CEEHDSP 05936760 +0000277C CEEHDSP 05936760 +0000277C CEEPLPKA Call
0002F018 AFHCSGLE 059DF718 +000001A8 AFHCSGLE 059DF718 +000001A8 AFHPRNAG Exception
05A44060 AFHOOPNR 05A11638 +00001EDE AFHOOPNR 05A11638 +00001EDE AFHPRNAG Call
05900A90 SAMPLE 059009A8 +0000021C SAMPLE 059009A8 +0000021C 6_ISN GO Call

[2]

Condition Information for Active Routines
Condition Information for AFHCSGLE (DSA address 0002F018)
CIB Address: 0002D468
Current Condition:
FOR1916S The OPEN statement for unit 999 failed. The unit number was either less than 0 or greater than 99, the highest
unit number allowed at your installation.
Location:
Program Unit: AFHCSGLE Entry: AFHCSGLE Statement: Offset: +000001A8
Storage dump near condition, beginning at Tocation: 059DF8BO
+000000 059DF8BO 50600198 5880C2B8 58FO801C 4110D190 O5EFD502 D3019751 4770A1FQ 4820D2FE |&-Jg..B..0....J...N.L.p....0..K.

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address 0002D018):
Saved Registers:

GPRO..... 000003E7 GPRI..... 0002D3B4 GPR2..... 0002DFD7 GPR3..... 0002E027
GPR4..... 0002DF94 GPR5..... 00000000 GPR6..... 00000004 GPR7..... 00000000
GPR8..... 0002E017 GPRI..... 0593875E GPR10.... 0593775F GPR11.... 85936760

GPR12.... 00014770 GPR13.... 0002D018 GPR14.... 800250DE GPR15.... 85949C70

GPREG STORAGE:

Storage around GPRO (000003E7)
-000020 000003C7 Inaccessible storage.
+000000 000003E7 Inaccessible storage.
+000020 00000407 Inaccessible storage.

Storage around GPR1 (0002D3B4)
-000020 0002D394 00000006 00000000 0002EO17 0593875E 0593775F 85936760 00014770 00000000
+000000 0002D3B4 0002DFD7 0002E027 0002DF94 0002DF94 0002DDF4 0002DEC4 0002E158 0002D018
+000020 0002D3D4 0002D468 00000000 00000000 00000007 859D67EQ 00000000 0OOAOOO0 05914848

3]

Local Variables:
ABC CHARACTER*3 123
J INTEGER*4 444
[4]

File Status and Attributes:
The total number of units defined is 100.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 94. Sections of the Language Environment Dump

Understanding the Language Environment traceback table

Examine the traceback section of the dump, labeled with [1] in for
condition information about your routine and information about the statement
number and address where the exception occurred. The traceback section helps
you locate where an error occurred in your program. The information in this section
begins with the most recent program unit and ends with the first program unit.

Identifying condition information

The section labeled [2] in shows the condition information for the active
routines, indicating the program message, program unit name, the statement
number, and the offset within the program unit where the error occurred.

222 2/0S V1R5.0 Language Environment Debugging Guide

Identifying variable information

The local variable section of the dump, shown in the section labeled [3] in[Figure 94
on page 222, contains information on all variables and arrays in each program unit
in the save area chain, including the program causing the dump to be invoked. The
output shows variable items (one line only) and array (more than one line) items.

Use the local variable section of the dump to identify the variable name, type, and
value at the time the dump was called. Variable and array items can contain either
character or noncharacter data, but not both.

Identifying file status information

The section labeled [4] in [Figure 94 on page 222| shows the file status and attribute
section of the dump. This section displays the total number of units defined, the
default units for error messages, and the default unit numbers for formatted input or
formatted output.

Examples of debugging FORTRAN routines

This section contains examples of FORTRAN routines and instructions for using
information in the Language Environment dump to debug them.

Calling a nonexistent routine

illustrates an error caused by calling a nonexistent routine. The options in
effect at compile time appear at the top of the listing.

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)
NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)
PROGRAM CALLNON
INTEGER*4 ARRAY_END

CALL SUBNAM

Figure 95. Example of Calling a Nonexistent Routine

|Figure 96 on page 224| shows sections of the dump generated by a call to SDUMP.

Chapter 6. Debugging FORTRAN routines 223

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 10:33:01 AM Page: 1
Information for enclave CALLNON

Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002D018 CEEHDSP 05936760 +0000277C CEEHDSP 05936760 +0000277C CEEPLPKA Call
05900C10 CALLNON 05900B28 -05900B26 CALLNON 05900B28 -05900B26 3_ISN GO Exception

Condition Information for Active Routines
Condition Information for CALLNON (DSA address 05900C10)
CIB Address: 0002D468
Current Condition:
CEE3201S The system detected an operation exception.

Location:
Program Unit: CALLNON
Entry: CALLNON

Statement: 3_ISN Offset: -05900B26
Machine State:

ILC..... 0002 Interruption Code..... 0001

PSW..... 078D3D00O 80000004

GPRO..... FDOOOOO8 GPRI..... 00000000 GPR2..... 05900004 GPR3..... 05900C10
GPR4..... 007F6930 GPR5..... 007FD238 GPR6..... 007BFFF8 GPR7..... FDO00OOO
GPR8..... 007FD968 GPRI..... 807FD4F8 GPR10.... 00000000 GPR11.... 007FD238

GPR12.... OOE21ED2 GPR13.... 05900C10 GPR14.... 85900CE8 GPR15.... 00000000
Storage dump near condition, beginning at Tocation: 00000000
+000000 00000000 Inaccessible storage.

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address 0002D018):
Saved Registers:

GPRO..... 00000000 GPRI..... 0002D3B4 GPR2..... 0002DFD7 GPR3..... 0002E027
GPR4..... 0002DF94 GPR5..... 00000000 GPR6..... 00000004 GPR7..... 00000000
GPR8..... 0002E017 GPRI..... 0593875E GPR10.... 0593775F GPR11.... 05936760

GPR12.... 00014770 GPR13.... 0002D018 GPR14.... 800250DE GPR15.... 85949C70

GPREG STORAGE:
Storage around GPRO (00000000)
+000000 00000000 Inaccessible storage.
+000020 00000020 Inaccessible storage.
+000040 00000040 Inaccessible storage.
Storage around GPR1 (0002D3B4)
-000020 0002D394 00000006 00000000 0OO2EA17 0593875E 0593775F 05936760 00014770 00000000
+000000 0002D3B4 0002DFD7 0002E027 0002DF94 0002DF94 0002DDF4 0002DEC4 0002E158 00000000
+000020 0002D3D4 0002D468 00000000 00000000 00000007 859D67EO 00000000 0OOOOOOO 05914848

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 10:33:01 AM Page: 4

File Status and Attributes:
The total number of units defined is 100.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 96. Sections of the Language Environment Dump Resulting from a Call to a Nonexistent Routine

To understand the traceback section, and debug this example routine, do the
following:

1. Find the Current Condition information in the Condition Information for Active
Routines section of the dump. The message is CEE3201S. The system
detected an operation exception at statement 3. For more information about this
message, see [z/0S Language Environment Run-Time Messages, This section
of the dump also provides such information as the name of the active routine
and the current statement number at the time of the dump.

2. Locate statement 3 in the routine shown in [Figure 95 on page 223| This
statement calls subroutine SUBNAM. The message CEE3201S in the Condition
Information section of the dump indicates that the operation exception was
generated because of an unresolved external reference.

3. Check the linkage editor output for error messages.

224 2/0S V1R5.0 Language Environment Debugging Guide

Divide-by-zero error

demonstrates a divide-by-zero error. In this example, the main FORTRAN
program passed 0 to subroutine DIVZEROSUB, and the error occurred when
DIVZEROSUB attempted to use this data as a divisor.

OPTIONS IN EFFECT: LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

WOWOONOOH WN

OPTIONS IN EFFECT:

ONOOOTEWN =

NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC
OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)

PROGRAM DIVZERO

INTEGER*4 ANY_NUMBER
INTEGER*4 ANY_ARRAY(3)
PRINT *,'EXAMPLE STARTING'
ANY_NUMBER = 0

D0I=1,3

ANY_ARRAY(I) = I

END DO

CALL DIVZEROSUB(ANY NUMBER, ANY ARRAY)
PRINT *,'EXAMPLE ENDING'
STOP

END

LIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NODDIM NORENT SDUMP(ISN)

NOSXM NOVECTOR IL(DIM) NOTEST SC(*) NODC NOEC NOEMODE NOICA NODIRECTIVE NODBCS NOSAA NOPARALLEL NODYNAMIC NOSYM
NOREORDER NOPC

OPT(0) LANGLVL(77) NOFIPS FLAG(I) HALT(S) AUTODBL(NONE) PTRSIZE(8) LINECOUNT(60) CHARLEN(500) NAME(MAIN#)

SUBROUTINE DIVZEROSUB(DIVISOR, DIVIDEND)
INTEGER+4 DIVISOR

INTEGER*4 DIVIDEND(3)

PRINT *,'IN SUBROUTINE DIVZEROSUB'
DIVIDEND(1) = DIVIDEND(3) / DIVISOR
PRINT =, 'END OF SUBROUTINE DIVZEROSUB'
RETURN

END

Figure 97. FORTRAN Routine with a Divide-by-Zero Error

[Figure 98 on page 226|shows the Language Environment dump for routine
DIVZERO.

Chapter 6. Debugging FORTRAN routines 225

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition. 08/30/01 10:33:01 AM Page: 1
Information for enclave DIVZERO

Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002D018 CEEHDSP 05936760 +0000277C CEEHDSP 05936760 +0000277C CEEPLPKA Call
05900640 DIVZSUB 05900558 +00000258 DIVZSUB 05900558 +00000258 5_ISN GO Exception
0002F018 AFHLCLNR 0001B150 +00000000 AFHLCLNR 0001B150 +00000000 AFHPRNBG Call
059002E8 DIVZERO 05900200 +00000298 DIVZERO 05900200 +00000298 9_ISN GO Call

Condition Information for Active Routines
Condition Information for DIVZSUB (DSA address 05900640)
CIB Address: 0002D468
Current Condition:
CEE3209S The system detected a fixed-point divide exception.

Location:
Program Unit: DIVZSUB
Entry: DIVZSUB

Statement: 5_ISN Offset: +00000258
Machine State:

ILC..... 0004 Interruption Code..... 0009

PSW..... 078D2A00 859007B4

GPRO..... 00000000 GPRI..... 00000003 GPR2..... 059003FC GPR3..... 05900400
GPR4..... 007F6930 GPR5..... 05900468 GPR6..... 0000000C GPR7..... 059003E0
GPR8..... 85900400 GPR9..... 807FD4F8 GPR10.... 00000000 GPR11.... 007FD238

GPR12.... OOE21ED2 GPR13.... 05900640 GPR14.... 8590079C GPR15.... 05900BA0
Storage dump near condition, beginning at Tocation: 059007A0
+000000 059007A0 5870D118 5800700C 5870D120 8E000020 5D007000 5870D118 50107004 58FOD128 |..J....... N) J.&....0d.

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address 0002D018):
Saved Registers:

GPRO..... 00000000 GPRI..... 0002D3B4 GPR2..... 0002DFD7 GPR3..... 0002E027
GPR4..... 0002DF94 GPR5..... 00000000 GPR6..... 00000004 GPR7..... 00000000
GPR8..... 0002E017 GPRI..... 0593875E GPR10.... 0593775F GPR11.... 05936760

GPR12.... 00014770 GPR13.... 0002D018 GPR14.... 800250DE GPR15.... 85949C70

GPREG STORAGE:

Storage around GPRO (00000000)
+000000 00000000 Inaccessible storage.
+000020 00000020 Inaccessible storage.
+000040 00000040 Inaccessible storage.

Storage around GPR1 (0002D3B4)
-000020 0002D394 00000006 00000000 00O2EQ17 0593875E 0593775F 05936760 00014770 00000000
+000000 0002D3B4 0002DFD7 0002E027 0002DF94 0002DF94 0002DDF4 0002DEC4 0002E158 00000000
+000020 0002D3D4 0002D468 00000000 00000000 0000007 859D67EQ 00000000 0OOOOOO0 05914848

Local Variables:

I INTEGERx*4 4

ANY_ARRAY (3) INTEGERx4

ANY_ARRAY (1) 1 2 3
ANY_NUMBER INTEGER*4 0

File Status and Attributes:
The total number of units defined is 100.
The default unit for the PUNCH statement is 7.
The default unit for the Fortran error messages is 6.
The default unit for formatted sequential output is 6.
The default unit for formatted sequential input is 5.

Figure 98. Language Environment Dump from Divide-By-Zero FORTRAN Example

To debug this application, do the following:

1. Locate the error message for the current condition in the Condition Information
section of the dump, shown in|Figure 98 The message is CEE3209S. The
system detected a fixed-point divide exception. See [z/0S Languagé
[Environment Run-Time Messagesd for additional information about this message.

2. Note the sequence of the calls in the call chain:

a. DIVZERO called AFHLCLNR, which is a FORTRAN library subroutine.

226 2/0S V1R5.0 Language Environment Debugging Guide

b. AFHLCLNR called DIVZEROSUB.

Note: When a program-unit name is longer than 7 characters, the name as
it appears in the dump consists of the first 4 and last 3 characters
concatenated together.

c. DIVZEROSUB attempted a divide-by-zero operation at statement 5.

d. This resulted in a call to CEEHDSP, a Language Environment condition
handling routine.

3. Locate statement 5 in the FORTRAN listing for the DIVZEROSUB subroutine in
[Figure 98 on page 226| This is an instruction to divide the contents of
DIVIDEND(3) by DIVISOR.

4. Since DIVISOR is a parameter of subroutine DIVZEROSUB, go to the
Parameters section of the dump shown in[Figure 98 on page 226 The
parameter DIVISOR shows a value of 0.

5. Since DIVISOR contains the value passed to DIVZEROSUB, check its value.
ANY_NUMBER is the actual argument passed to DIVZEROSUB, and the dump
and listing of DIVZERO indicate that ANY_NUMBER had value 0 when passed
to DIVZEROSUB, leading to the divide-by-zero exception.

Chapter 6. Debugging FORTRAN routines 227

228 2/0S V1R5.0 Language Environment Debugging Guide

Chapter 7. Debugging PL/I routines

This chapter contains information that can help you debug applications that contain
one or more PL/I routines. Following a discussion about potential errors in PL/I
routines, the first part of this chapter discusses how to use compiler-generated
listings to obtain information about PL/I routines, and how to use PLIDUMP to
generate a Language Environment dump of a PL/I routine. The last part of the
chapter provides examples of PL/I routines and explains how to debug them using
information contained in the traceback information provided in the dump. The topics
covered are listed below.

» Determining the source of errors in PL/I routines

» Using PL/I compiler listings

* Generating a Language Environment dump of a PL/I routine

» Finding PL/I information in a dump

» Debugging example of PL/I routines

Determining the source of errors in PL/I routines

Most errors in PL/I routines can be identified by the information provided in PL/I
run-time messages, which begin with the prefix IBM. For a list of these messages,
see [z/0S Language Environment Run-Time Messaged

A malfunction in running a PL/I routine can be caused by:
* Logic errors in the source routine

* Invalid use of PL/I

* Unforeseen errors

* Invalid input data

» Compiler or run-time routine malfunction

» System malfunction

* Unidentified routine malfunction

* Overlaid storage

Logic errors in the source routine

Errors of this type are often difficult to detect because they often appear as
compiler or library malfunctions.

Some common errors in source routines are:

* Incorrect conversion from arithmetic data

* Incorrect arithmetic and string manipulation operations
» Unmatched data lists and format lists

Invalid use of PL/I

A misunderstanding of the language or a failure to provide the correct environment
for using PL/I can result in an apparent malfunction of a PL/I routine.

Any of the following, for example, might cause a malfunction:
» Using uninitialized variables

» Using controlled variables that have not been allocated

* Reading records into incorrect structures

* Misusing array subscripts

* Misusing pointer variables

* Incorrect conversion

* Incorrect arithmetic operations

* Incorrect string manipulation operations

© Copyright IBM Corp. 1991, 2004 229

Unforeseen errors

If an error is detected during run time and no ON-unit is provided in the routine to
terminate the run or attempt recovery, the job terminates abnormally. However, the
status of a routine at the point where the error occurred can be recorded by using
an ERROR ON-unit that contains the statements:
ON ERROR

BEGIN;

ON ERROR SYSTEM;

CALL PLIDUMP; /*generates a dumpx/

PUT DATA; /*displays variablesx/
END;

The statement ON ERROR SYSTEM ensures that further errors do not result in a
permanent loop.

Invalid input data

A routine should contain checks to ensure that any incorrect input data is detected
before it can cause the routine to malfunction.

Use the COPY option of the GET statement to check values obtained by
stream-oriented input. The values are listed on the file named in the COPY option.
If no file name is given, SYSPRINT is assumed.

Compiler or run-time routine malfunction

If you are certain that the malfunction is caused by a compiler or run-time routine
error, you can either open a PMR or submit an APAR for the error. See either PL/I
for MVS & VM Diagnosis Guide or |VisualAge PL/I for 0S/390 Diagnosis Guide for
more information about handling compiler and run-time routine malfunctions.
Meanwhile, you can try an alternative way to perform the operation that is causing
the trouble. A bypass is often feasible, since the PL/l language frequently provides
an alternative method of performing operations.

System malfunction

System malfunctions include machine malfunctions and operating system errors.
System messages identify these malfunctions and errors to the operator.

Unidentified routine malfunction

In most circumstances, an unidentified routine malfunction does not occur when
using the compiler. If your routine terminates abnormally without an accompanying
Language Environment run-time diagnostic message, the error causing the
termination might also be inhibiting the production of a message. Check for the
following:
* Your job control statements might be in error, particularly in defining data sets.
* Your routine might overwrite main storage areas containing executable

instructions. This can happen if you have accidentally:

— Assigned a value to a nonexistent array element. For example:

DCL ARRAY(10);

DO I =1 TO 100;
ARRAY (1) = VALUE;

To detect this type of error in a compiled module, set the SUBSCRIPTRANGE
condition so that each attempt to access an element outside the declared

230 2/0S V1R5.0 Language Environment Debugging Guide

range of subscript values raises the SUBSCRIPTRANGE condition. If there is
no ON-unit for this condition, a diagnostic message is printed and the ERROR
condition is raised. This facility, though expensive in run time and storage
space, is a valuable routine-testing aid.

— Used an incorrect locator value for a locator (pointer or offset) variable. This
type of error can occur if a locator value is obtained by means of
record-oriented transmission. Ensure that locator values created in one
routine, transmitted to a data set, and subsequently retrieved for use in
another routine, are valid for use in the second routine.

— Attempted to free a nonbased variable. This can happen when you free a
based variable after its qualifying pointer value has been changed. For
example:

DCL A STATIC,B BASED (P);
ALLOCATE B;

P = ADDR(A);

FREE B;

— Used the SUBSTR pseudovariable to assign a string to a location beyond the

end of the target string. For example:

DCL X CHAR(3);

I=3

SUBSTR(X,2,I) = 'ABC';

To detect this type of error, enable the STRINGRANGE condition during
compilation.

Storage overlay problems

If you suspect an error in your PL/I application is a storage overlay problem, check
for the following:

» The use of a subscript outside the declared bounds (check the
SUBSCRIPTRANGE condition)

* An attempt to assign a string to a target with an insufficient maximum length
(check the STRINGSIZE condition)

* The failure of the arguments to a SUBSTR reference to comply with the rules
described for the SUBSTR built-in function (check the STRINGRANGE condition)

* The loss of significant last high-order (left-most) binary or decimal digits during
assignment to an intermediate result or variable or during an input/output
operation (check the SIZE condition)

* The reading of a variable-length file into a variable
» The misuse of a pointer variable

» The invocation of a Language Environment callable service with fewer arguments
than are required

The first four situations are associated with the listed PL/I conditions, all of which
are disabled by default. If you suspect one of these problems exists in your routine,
use the appropriate condition prefix on the suspected statement or on the BEGIN or
PROCEDURE statement of the containing block.

The fifth situation occurs when you read a data record into a variable that is too
small. This type of problem only happens with variable-length files. You can often
isolate the problem by examining the data in the file information and buffer.

The sixth situation occurs when you misuse a pointer variable. This type of storage

overlay is particularly difficult to isolate. There are a number of ways pointer
variables can be misused:

Chapter 7. Debugging PL/I routines 231

* When a READ statement runs with the SET option, a value is placed in a pointer.
If you then run a WRITE statement or another READ SET option with another
pointer, you overlay your storage if you try to use the original pointer.

* When you try to use a pointer to allocate storage that has already been freed,
you can also cause a storage overlay.

* When you attempt to use a pointer set with the ADDR built-in function as a base
for data with different attributes, you can cause a storage overlay.

The seventh situation occurs when a Language Environment callable service is
passed fewer arguments than its interface requires. The following example might
cause a storage overlay because Language Environment assumes that the fourth
item in the argument list is the address of a feedback code, when in reality it could
be residue data pointing anywhere in storage.

Invalid calls:

DCL CEEDATE ENTRY OPTIONS(ASM);

CALL CEEDATE(x,y,z); /* invalid */
Valid calls:

DCL CEEDATE ENTRY (*,*,*,* OPTIONAL) OPTIONS(ASM);
CALL CEEDATE(x,y,z,*); /* valid =/
CALL CEEDATE(x,y,z,fc); /x valid =/

Using PL/l compiler listings

The following sections explain how to generate listings that contain information
about your routine. PL/I listings show machine instructions, constants, and external
or internal addresses that the linkage editor resolves. This information can help you
find other information, such as variable values, in a dump of a PL/I routine.

Note: VisualAge PL/I shares a common compiler back-end with C/C++. The
VisualAge PL/I assembler listing will, consequently, have a similar form to
those from the C/C++ compiler.

The PL/I compiler listings included below are from the PL/I for MVS & VM product.

Generating PL/I listings and maps

The following table shows compiler-generated listings that you might find helpful
when you use information in dumps to debug PL/I routines. For more information
about supported compiler options that generate listings, reference either the PL/I for
MVS & VM Programming Guide or the |VisualAge PL/I for 0S/390 Programming

(Guicd

Table 21. Compiler-generated PL/I Listings and Their Contents

Name Contents Compiler Option
Source program Source program statements SOURCE
Cross reference Cross reference of names with attributes XREF and
ATTRIBUTES
Aggregate table Names and layouts of structures and arrays AGGREGATE
Variable map Offsets of automatic and static internal variables | MAP
(from their defining base)

232 2/0S V1R5.0 Language Environment Debugging Guide

Table 21. Compiler-generated PL/I Listings and Their Contents (continued)

Name Contents Compiler Option

Object code Contents of the program control section in LIST
hexadecimal notation and translated into a
pseudo-assembler format. To limit the size of the
object code listing, specify a certain statement or
range of statements to be listed; for example,
LIST(20) or LIST(10,30).

Variable map, Same as MAP and LIST options above, plus MAP and LIST
object code, static | contents of static internal and static external
storage control sections in hexadecimal notation with

comments

Finding information in PL/I listings
Figure 99| shows an example PL/I routine that was compiled with LIST and MAP.

*PROCESS SOURCE, LIST, MAP;
SOURCE LISTING
STMT

EXAMPLE: PROC OPTIONS(MAIN);
DCL EXTR ENTRY EXTERNAL;
DCL A FIXED BIN(31);
DCL B(2,2) FIXED BIN(31) STATIC EXTERNAL INIT((4)0);
DCL C CHAR(20) STATIC INIT('SAMPLE CONSTANT');
DCL D FIXED BIN(31) STATIC;
DCL E FIXED BIN(31);
FETCH EXTR;
CALL EXTR(A,B,C,D,E);
DISPLAY(C);
END;

HFOWOWONOOLPWN -

— =

Figure 99. PL/I Routine Compiled with LIST and MAP

[Figure 100 on page 234] shows the output generated from this routine, including the
static storage map, variable storage map, and the object code listing. The sections
following this example describe the contents of each type of listing.

Chapter 7. Debugging PL/I routines 233

STATIC INTERNAL STORAGE MAP

000000 EOOOOOES PROGRAM ADCON
000004 00000008 PROGRAM ADCON
000008 00000096 PROGRAM ADCON
00000C 00000096 PROGRAM ADCON
000010 00000096 PROGRAM ADCON
000014 00000000 A..IBMSJDSA
000018 00000000 A. . IBMSPFRA
00001C 00000000 A..STATIC
000020 ©000000BA0000044 LOCATOR. .B
000028 ©000008800140000 LOCATOR. .C
000030 91EQ91E0 CONSTANT
000034 ©ABOOOOOC5E7E3DY FECB..EXTR
40404040
000040 80000034 A..FECB..EXTR
000044 ©00000OCOAOO0008 DESCRIPTOR
0000000200000001
0000000400000002
00000001
000060 80000034 A..FECB..EXTR
000064 00000000 A..B
000068 00000000 A..A
00006C 00000020 A..LOCATOR
000070 00000028 A..LOCATOR
000074 ©00000A0 A..D
000078 80000000 A..E
00007C 00000000 A..ENTRY EXTR
000080 80000028 A..LOCATOR
000084
000088 E2C1D4D7D3C540C3 INITIAL VALUE..C
D6D5E2E3C1D5E340
40404040
STATIC EXTERNAL CSECTS
000000 ©000000BAA000000 CSECT FOR EXTERNAL VARIABLE
0000000000000000
VARIABLE STORAGE MAP
IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK
E 1 184 B8 AUTO EXAMPLE
D 1 160 A® STATIC EXAMPLE
c 1 136 88 STATIC EXAMPLE
A 1 188 BC AUTO EXAMPLE
OBJECT LISTING
000096 58 BO C 004 L 11,4(0,12)
00009A 58 FB 0 000 L 15,PR. .EXTR
* STATEMENT NUMBER 1 00009E 59 FO C 064 c 15,100(0,12)
000000 DC C'EXAMPLE' 0000A2 47 70 2 O1E BNE CL.5
000007 DC ALL(7) 0000A6 41 10 3 040 LA 1,64(0,3)
0006AA 58 FO 3 018 L 15,A. . IBMSPFRA
* PROCEDURE EXAMPLE 0000AE 05 EF BALR 14,15
0000B0 58 FB 0 000 L 15,PR. .EXTR
* REAL ENTRY 0000B4 CL.5 EQU *
000008 90 EC D 00C STM 14,12,12(13)
00000C 47 FO F 04C B *+72
000010 00000000 DC A(STMT. NO. TABLE) + STATEMENT NUMBER 9
000014 ©00000D8 DC F'216' 0000B4 D2 13 D 0CO 3 068 MVC 192(20,13),104(3)
000018 00000000 DC A(STATIC CSECT) 0006BA 41 76 D OBC LA WA
00001C 00000000 DC A(SYMTAB VECTOR) @G@BE 50 70 D 0CO ST 7,192(0,13)
000020 00000000 DC A(COMPILATION INFO) 0066C2 41 70 D B8 LA 7,E
000024 A8000000 DC X'A8000000' 0000C6 50 76 D 6DO ST 7,208(0,13)
000028 00010160 DC X'00910100' 0000CA 96 80 D 6DO 01 208(13),X'80'
00002C 00000000 DC X'00000000' 0000CE 58 FB 0 000 L 15,PR..EXTR
000030 00000000 DC X'00000000' 000002 59 FO C 064 c 15,100(0,12)
000034 00000000 DC A(ENTRY LIST VECTOR)000D6 47 70 2 052 BNE CL.6
Figure 100. Compiler-Generated Listings from Example PL/I Routine (Part 1 of 2)

234

z/OS V1R5.0 Language Environment Debugging Guide

000038
00003C
000040
000044
000048

00000000
01008000
00000000
00000002
00000000
00004C 00000000
000050 00000000
000054 58 30 F
000058 58 10 D
00005C 58 00 F
000060 1E 01
000062 55 00 C
000066 47 DO F
00006A 58 FO C
00006E 05 EF
000070 58 EO D
000074 18 FO
000076 90 EO
00007A 50 DO
00007E 92 80
000082 92 25
000086 92 02
00008A 41 D1
00008E D2 03
000094 05 20

* PROCEDURE BASE

010
04C
00C

00C
068
074

048

048
004
000
001
076
000
054 3 030

DC X'00000000"
DC X'01008000"
DC A(REGION TABLE)
DC X'00000002"
DC A(PRIMARY ENTRY)
DC X'00000000"
DC X'00000000"
L 3,16(0,15)
L 1,76(0,13)
L 0,12(0,15)

ALR 0,1
L 0,12(0,12)

BNH #+10

L 15,116(0,12)
BALR 14,15

L 14,72(0,13)

LR 15,0

STM 14,0,72(1)

ST 13,4(0,1)

MVI 0(1),X'80"

MVI 1(1),X'25'

MVI 118(1),X'02"
LA 13,0(1,0)

MVC 84(4,13),48(3)
BALR 2,0

0000DA 41 10 3 060 LA 1,96(0,3)
0000DE 58 FO 3 018 L 15,A. . IBMSPFRA
0000E2 05 EF BALR 14,15

0000E4 58 FB 0 000 L 15,PR..EXTR
0000E8 CL.6 EQU =

0000E8 1B 55 SR 5,5

0000EA 41 10 D 0CO LA 1,192(0,13)
0000EE 05 EF BALR 14,15

* STATEMENT NUMBER 10

0000FO 41 10 3 080 LA 1,128(0,3)
0000F4 58 FO 3 014 L 15,A. . IBMSJDSA
0000F8 05 EF BALR 14,15

* STATEMENT NUMBER 11

0000FA 18 0D LR 0,13

0000FC 58 DO D 004 L 13,4(0,13)
000100 58 EO D 00C L 14,12(0,13)
000164 98 2C D 01C LM 2,12,28(13)
000108 05 1E BALR 1,14

= END PROCEDURE

00010A 07 07 NOPR 7

* END PROGRAM

Figure 100. Compiler-Generated Listings from Example PL/I Routine (Part 2 of 2)

Static internal storage map
To get a complete variable storage map and static storage map, but not a complete
LIST, specify a single statement for LIST to minimize the size of the listing; for

example, LIST(1).

Each line of the static storage map contains the following information:

1. Six-digit hexadecimal offset.

2. Hexadecimal text, in 8-byte sections where possible.

3. Comment, indicating the type of item to which the text refers. The comment
appears on the first line of the text for an item.

Some typical comments you might find in a static storage listing:

Table 22. Typical Comments in a PL/I Static Storage Listing

Comment

Explanation

A..xxx

Address constant for xxx

COMPILER LABEL CL.n

Compiler-generated label n

CONDITION CSECT

Control section for programmer-named condition

CONSTANT

Constant

CSECT FOR EXTERNAL
VARIABLE

Control section for external variable

D..xxx Descriptor for xxx

DED..xxx Data element descriptor for xxx
DESCRIPTOR Data descriptor

ENVB Environment control block
FECB..xxx Fetch control block for xxx
DCLCB Declare control block

Chapter 7. Debugging PL/I routines 235

236

Table 22. Typical Comments in a PL/I Static Storage Listing (continued)

Comment Explanation

FED..xxx Format element descriptor for xxx
KD..xxx Key descriptor for xxx
LOCATOR..xxx Locator for xxx

ONCB ON statement control block

PICTURED DED..xxx

Pictured data element descriptor for xxx

PROGRAM ADCON

Program address constant

RD..xxx

Record descriptor for xxx

SYMBOL TABLE ELEMENT

Symbol table address

SYMBOL TABLE..xxx

Symbol table for xxx

SYMTAB DED..xxx

Symbol table DED for xxx

USER LABEL..xxx

Source program label for xxx

XXX

Variable with name xxx. If the variable is not initialized, no
text appears against the comment. There is also no static
offset if the variable is an array (the static offset can be
calculated from the array descriptor, if required).

Variable storage map

For automatic and static internal variables, the variable storage map contains the

following information:
* PL/I identifier name
* Level

» Storage class

» Name of the PL/I block in which it is declared
« Offset from the start of the storage area, in both decimal and hexadecimal form

If the LIST option is also specified, a map of the static internal and external control
sections, called the static storage map, is also produced.

Object code listing

The object code listing consists of the machine instructions and a translation of
these instructions into a form that resembles assembler and includes comments,
such as source program statement numbers.

The machine instructions are formatted into blocks of code, headed by the
statement or line number in the PL/I source program listing. Generally, only
executable statements appear in the listing. DECLARE statements are not normally
included. The names of PL/I variables, rather than the addresses that appear in the
machine code, are listed. Special mnemonics are used to refer to some items,
including test hooks, descriptors, and address constants.

Statements in the object code listing are ordered by block, as they are sequentially
encountered in the source program. Statements in the external procedure are given
first, followed by the statements in each inner block. As a result, the order of
statements frequently differs from that of the source program.

Every object code listing begins with the name of the external procedure. The
actual entry point of the external procedure immediately follows the heading
comment REAL ENTRY. The subsequent machine code is the prolog for the block,

z/OS V1R5.0 Language Environment Debugging Guide

which performs block activation. The comment PROCEDURE BASE marks the end of
the prolog. Following this is a translation of the first executable statement in the PL/I

source program.

Following are the comments used in the listing:

Table 23. Comments in a PL/I Object Code Listing

Comment

Function

BEGIN BLOCK xxx

Indicates the start of the begin block with label xxx

BEGIN BLOCK NUMBER n

Indicates the start of the begin block with number n

CALCULATION OF
COMMONED EXPRESSION
FOLLOWS

Indicates that an expression used more than once in the
routine is calculated at this point

CODE MOVED FROM
STATEMENT NUMBER n

Indicates object code moved by the optimization process to a
different part of the routine and gives the number of the
statement from which it originated

COMPILER GENERATED
SUBROUTINE xxx

Indicates the start of compiler-generated subroutine xxx

CONTINUATION OF
PREVIOUS REGION

Identifies the point at which addressing from the previous
routine base recommences

END BLOCK

Indicates the end of a begin block

END INTERLANGUAGE
PROCEDURE xxx

Identifies the end of an ILC procedure xxx

END OF COMMON CODE

Identifies the end of code used in running more than one
statement

END OF COMPILER
GENERATED SUBROUTINE

Indicates the end of the compiler-generated subroutine

END PROCEDURE

Identifies the end of a procedure

END PROGRAM

Indicates the end of the external procedure

INITIALIZATION CODE FOR
XXX

Indicates the start of initialization code for variable xxx

INITIALIZATION CODE FOR
OPTIMIZED LOOP FOLLOWS

Indicates that some of the code that follows was moved from
within a loop by the optimization process

INTERLANGUAGE
PROCEDURE xxx

Identifies the start of an implicitly generated ILC procedure
XXX

METHOD OR ORDER OF
CALCULATING
EXPRESSIONS CHANGED

Indicates that the order of the code following was changed to
optimize the object code

ON-UNIT BLOCK NUMBER n

Indicates the start of an ON-unit block with number n

ON-UNIT BLOCK END

Indicates the end of the ON-unit block

PROCEDURE xxx

Identifies the start of the procedure labeled xxx

PROCEDURE BASE

Identifies the address loaded into the base register for the
procedure

PROGRAM
ADDRESSABILITY REGION
BASE

Identifies the address where the routine base is updated if
the routine size exceeds 4096 bytes and consequently
cannot be addressed from one base

PROLOGUE BASE

Identifies the start of the prolog code common to all entry
points into that procedure

REAL ENTRY

Precedes the actual executable entry point for a procedure

Chapter 7. Debugging PL/I routines 237

238

Table 23. Comments in a PL/I Object Code Listing (continued)

Comment

Function

STATEMENT LABEL xxx

Identifies the position of source program statement label xxx

STATEMENT NUMBER n

Identifies the start of code generated for statement number n
in the source listing

In certain cases the compiler uses mnemonics to identify the type of operand in an
instruction and, where applicable, follows the mnemonic by the name of a PL/I

variable.

Table 24. PL/I Mnemonics

Mnemonic Explanation

AL xxx Address constant for xxx

ADD..xxx Aggregate descriptor for xxx

BASE..xxx Base address of variable xxx

BLOCK.n Identifier created for an otherwise unlabeled block
CL.n Compiler-generated label number n

D..xxx Descriptor for xxx

DED..xxx Data element descriptor for xxx

HOOK...ENTRY Debugging tool block entry hook

HOOK...BLOCK-EXIT

Debugging tool block exit hook

HOOK...PGM-EXIT

Debugging tool program exit hook

HOOK...PRE-CALL

Debugging tool pre-call hook

HOOK...INFO Additional pre-call hook information
HOOK...POST-CALL Debugging tool post call hook
HOOK...STMT Debugging tool statement hook

HOOK...IF-TRUE

Debugging tool IF true hook

HOOK...IF-FALSE

Debugging tool ELSE hook

HOOK...WHEN Debugging tool WHEN true hook
HOOK...OTHERWISE Debugging tool OTHERWISE true hook
HOOK...LABEL Debugging tool label hook

HOOK...DO Debugging tool iterative DO hook
HOOK...ALLOC Debugging tool ALLOCATE controlled hook
WSP.n Workspace, followed by identifying number n
L..xxx Length of variable xxx

PR..xxx Pseudoregister vector slot for xxx
LOCATOR..xxx Locator for xxx

RKD..xxx Record or key descriptor for xxx

VO..xxx Virtual origin for xxx (the address where element 0 is held for

a one-dimensional array, element 0,0 for a two-dimensional
array, and so on)

z/OS V1R5.0 Language Environment Debugging Guide

Generating a Language Environment dump of a PL/I routine

To generate a dump of a PL/I routine, you can call either the Language
Environment callable service CEE3DMP or PLIDUMP. For information about calling
CEE3DMP, see |“Generating a Language Environment dump with CEESDMP” on|

PLIDUMP syntax and options

PLIDUMP calls intermediate PL/I library routines, which convert most PLIDUMP
options to CEE3DMP options. The following list contains PLIDUMP options and the
corresponding CEE3DMP option, if applicable.

Some PLIDUMP options do not have corresponding CEE3DMP options, but
continue to function as PL/I default options. The list following the syntax diagram
provides a description of those options.

Note: VisualAge PL/I does not support multitasking, therefore, the PLIDUMP
options that refer to multitasking do not apply to VisualAge PL/I.

PLIDUMP now conforms to National Language Support standards.
PLIDUMP can supply information across multiple Language Environment enclaves.
If an application running in one enclave fetches a main procedure (an action that

creates another enclave), PLIDUMP contains information about both procedures.

The syntax and options for PLIDUMP are shown below.

Syntax

v
A

»»—PLIDUMP—(—char. -string-exp 1—,—char.-string-exp 2—)

char.-string-exp 1
A dump options character string consisting of one or more of the following:

A All. Results in a dump of all tasks including the ones in the WAIT state.

B BLOCKS (PL/I hexadecimal dump). Dumps the control blocks used in
Language Environment and member language libraries. For PL/I, this
includes the DSA for every routine on the call chain and PL/I "global”
control blocks, such as Tasking Implementation Appendage (TIA), Task
Communication Area (TCA), and the PL/I Tasking Control Block
(PTCB). PL/I file control blocks and file buffers are also dumped if the F
option is specified.

C Continue. The routine continues after the dump.

E Exit. The enclave terminates after the dump. In a multitasking
environment, if PLIDUMP is called from the main task, the enclave
terminates after the dump. If PLIDUMP is called from a subtask, the
subtask and any subsequent tasks created from the subtask terminate
after the dump. In a multithreaded environment, if PLIDUMP is called
from the Initial Process Thread (IPT), the enclave terminates after the
dump. If PLIDUMP is called from a non-IPT, only the non-IPT
terminates after the dump.

Chapter 7. Debugging PL/I routines 239

F FILE INFORMATION. A set of attributes for all open files is given. The
contents of the file buffers are displayed if the B option is specified.

H STORAGE in hexadecimal. A SNAP dump of the region is produced. A
ddname of CEESNAP must be provided to direct the CEESNAP dump
report.

K BLOCKS (when running under CICS). The Transaction Work Area is
included.

Note: This option is not supported under VisualAge PL/I.
NB NOBLOCKS.
NF NOFILES.
NH NOSTORAGE.
NK NOBLOCKS (when running under CICS).
NT NOTRACEBACK.

(0] THREAD(CURRENT). Results in a dump of only the current task or
current thread (the invoker of PLIDUMP).

S Stop. The enclave terminates after the dump. In a multitasking
environment, regardless of whether PLIDUMP is called from the main
task or a subtask, the enclave terminates after the dump. In a
multithreaded environment, regardless of whether PLIDUMP is called
from the IPT or a non-IPT, the enclave terminates after the dump (in
which case there is no fixed order as to which thread terminates first).

T TRACEBACK. Includes a traceback of all routines on the call chain.
The traceback shows transfers of control from either calls or exceptions.
BEGIN blocks and ON-units are also control transfers and are included
in the trace. The traceback extends backwards to the main program of
the current thread.

T, F, C, and A are the default options.

char.-string-exp 2

A user-identified character string up to 80 characters long that is printed as the
dump header.

PLIDUMP usage notes
If you use PLIDUMP, the following considerations apply:

240

If a routine calls PLIDUMP a number of times, use a unique user-identifier for
each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

In MVS or TSO, you can use ddnames of CEEDUMP, PLIDUMP, or PL1DUMP to
direct dump output. If no ddname is specified, CEEDUMP is used.

The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement
should specify a logical record length (LRECL) of at least 131 to prevent dump
records from wrapping.

When you specify the H option in a call to PLIDUMP, the PL/I library issues an
OS SNAP macro to obtain a dump of virtual storage. The first invocation of
PLIDUMP results in a SNAP identifier of 0. For each successive invocation, the
ID is increased by one to a maximum of 256, after which the ID is reset to 0.
Support for SNAP dumps using PLIDUMP is provided only under MVS. SNAP
dumps are not produced in a CICS environment.

z/OS V1R5.0 Language Environment Debugging Guide

— If the SNAP does not succeed, the CEE3DMP DUMP file displays the
message:

Snap was unsuccessful

Failure to define a CEESNAP data set is the most likely cause of an
unsuccessful CEESNAP.

— If the SNAP is successful, CEE3DMP displays the message:
Snap was successful; snap ID = nnn

where nnn corresponds to the SNAP identifier described above. An
unsuccessful SNAP does not result in an incrementation of the identifier.

» To ensure portability across system platforms, use PLIDUMP to generate a dump
of your PL/I routine.

Finding PL/I information in a dump

Traceback

The following sections discuss PL/I-specific information located in the following
sections of a Language Environment dump:

» Traceback

Control Blocks for Active Routines

Control Block Associated with the Thread

* File Status and Attributes

Examine the traceback section of the dump, shown in|Figure 101 on page 242} for
condition information about your routine and information about the statement
number and address where the exception occurred.

Chapter 7. Debugging PL/I routines 241

CEE3DMP V1 r5.0: PLIDUMP called from error ON-unit. 08/05/95 4:04:12 PM Page: 1
PLIDUMP was called from statement number 6 at offset +000000D6 from ERROR ON-UNIT with entry address 00020168
Information for enclave EXAMPLE

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

PM....... 0100

GPRO..... 00000000 GPR1..... 00077448 GPR2..... 053AD9AF GPR3..... 853AD514

GPR4..... 00000001 GPR5..... 053AD314 GPR6..... 80077454 GPR7..... 00000000

GPR8..... 00000001 GPRI..... 80000000 GPR10.... 00077470 GPR11.... 000F7490

GPR12.... 00O6A520 GPR13.... 000773C8 GPR14.... 80060712 GPR15.... 853F7918

FPRO..... 4D000000 00043C31 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
005359A0 CEEKKMRA 00654438 +00000748 CEEKKMRA 00654438 +00000748 CELE38 Call
006D9810 LIBRARY(PLI) 005CBE98 +000000B2 LIBRARY(PLI) 005CBE98 +000000B2 CEEPLPKA Call
005358A0 EXAMPLE 00020080 +00OOO1BE ERR ON-UNIT 00020168 +000000D6 CELE38 6 Call
00535698 IBMRERPL 007CB410 +00000528 IBMRERPL 007CB410 +00000528 Call
005355B0 CEEEVO10 005B5000 +00OOOOE8 CEEEVO10 005B5000 +000OOOE8 Call
006C3018 CEEHDSP 005F6D00 +00000970 CEEHDSP 005F6D00 +00000970 Call
00535428 IBMRERRI 007CB040 +00000254 IBMRERRI 007CB040 +00000254 Exception
00535358 EXAMPLE 00020080 +00000296 LABL1: BEGIN 00020258 +000000BE 11 Call
00535258 EXAMPLE 00020080 +00000ODO EXAMPLE 00020088 +000OOOCS 8 Call
005351B0 IBMRPMIA 007CABDO +000002FA IBMRPMIA 007CABDO +000002FA Call
005350C8 CEEEVO10 005B5000 +0OOOO1FE CEEEVO10 005B5000 +000OO1FE Call
00535018 CEEBBEXT 005E55F0 +0000012E CEEBBEXT 005E55F0 +0000012E Call

Condition Information for Active Routines
Condition Information for IBMRERRI (DSA address 00535428)
CIB Address: 006C33C8
Current Condition:
1BM0930S
Original Condition:
IBMO421S ONCODE=520 The SUBSCRIPTRANGE condition was raised.
Location:
Program Unit: IBMRERRI Entry: IBMRERRI Statement: Offset: +00000254

Figure 101. Traceback Section of Dump

PL/I task traceback

A task traceback table is produced for multitasking programs showing the task
invocation sequence (trace). For each task, the CAA address, task variable
address, event variable address, thread ID, and absolute priority appear in the
traceback table. An example is shown in [Figure 102 on page 243

242 2/0S V1R5.0 Language Environment Debugging Guide

CEE3DMP V1 R5.0: called from SUBTSK2 08/18/95 2:36:49 PM
Page: 1

PLIDUMP was called from statement number 23 at offset +000000D2 from BEGIN BLOCK6 within task SUBTSK2

PL/I Task Traceback:

Task Attached by Thread ID TCA Addr EV Addr TV Addr Absolute Priority
SUBTSK2 SUBTSK1 03B2CB7800000003 00070708 000684F8 000684E8 000
SUBTSK1 SUBTASK 03B2C2D0000OO0O2 00066708 00034498 00034488 000
SUBTASK TASKING 03B2BA2800000001 0005D708 00034468 00034458 056
TASKING 03B2B18000000000 00016658 000545D4 0005423C 254

Information for enclave TASKING

Information for thread 03B2CB7800000003

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load Service Statement Status
000726A8 CEEKKMRA 0394AACO +00000860 CEEKKMRA 0394AACO +00000860 CELE38 Call
0006E2E8 IBMRKDM 039D2450 +000000BA IBMRKDM 039D2450 +00000OBA CEEPLPKA Call
000725B8 SUBTSK1 00007760 +0000052A BEGIN BLOCK6 00007BB8 +000000D2 CELE38 23 Call
000724F8 SUBTSK1 00007760 +0000043E PROCA 00007B1C +00000082 21 Call
00072430 SUBTSK1 00007760 +0000036E SUBTSK2 00007A24 +000000AA 19 Call
000715D8 IBMUPTMM 00023920 +000000F6 IBMUPTMM 00023920 +000000F6 Call
7F6653A0 00006E38 +00000000 00006E38 +00000000 Call

Figure 102. Task Traceback Section

Condition information

If the dump was called from an ON-unit, the type of ON-unit is identified in the
traceback as part of the entry information. For ON-units, the values of any relevant
condition built-in functions (for example, ONCHAR and ONSOURCE for conversion
errors) appear. In cases where the cause of entry into the ON-unit is not stated,
usually when the ERROR ON-unit is called, the cause of entry appears in the
condition information.

Statement number and address where error occurred
This information, which is the point at which the condition that caused entry to the
ON-unit occurred, can be found in the traceback section of the dump.

If the condition occurs in compiled code, and you compiled your routine with either
GOSTMT or GONUMBER, the statement numbers appear in the dump. To identify
the assembler instruction that caused the error, use the traceback information in the
dump to find the program unit (PU) offset of the statement number in which the
error occurred. Then find that offset and the corresponding instruction in the object
code listing.

Control blocks for active routines

This section shows the stack frames for all active routines, and the static storage.
Use this section of the dump to identify variable values, determine the contents of
parameter lists, and locate the timestamp.

[Figure 103 on page 244] shows this section of the dump.

Chapter 7. Debugging PL/I routines 243

Control Blocks for Active Routines:

DSA for PLIDMPB: 003CA438

+000000 FLAGS.... 8025 member. .. 0000 BKC...... 003CA348 FWC...... 00000000 R14...... 4E020360
+000010 R15...... 805611C0 RO....... 003CA588 Rl....... 000204AC R2....... 5E0202BE R3....... 000203B8
+000024 R4....... 003CA57C R5....... 00000000 R6....... 00000009 R7....... 00000001 R8....... 003CA554
+000038 R9....... 003CA4F8 RI10...... 00000004 RII...... 00000008 RI12...... 003CA4EC reserved. 00542280
+00004C NAB...... 003CA588 PNAB..... 003CA588 reserved. 91EQ91E@ 003CA348 007C8090 00627188
+000064 reserved. 003CA4E8 reserved. 005C8E10 MODE..... 0058C848 reserved. 003CA608 00620258

+000078 reserved. 003CA4E8 reserved. 003CA4EC
DYNAMIC SAVE AREA (PLIDMPB): 003CA438

+000000 003CA438 80250000 003CA348 00000000 4E020360 805611C0 O03CA588 000204AC 5E0202BE
+000020 003CA458 000203B8 003CA57C 00000000 00000009 00000001 003CA554 003CA4F8 00000004
+000040 003CA478 00000008 003CA4EC 00542280 003CA588 003CA588 91E091EO 003CA348 007C8090
+000060 003CA498 00627188 003CA4E8 005C8E10 0058C848 003CA608 00620258 O03CA4E8 003CA4EC
+000080 003CA4B8 00627250 003CA608 00627258 000204D7 00100000 00627250 003CA4E8 00627250
+0000A0 003CA4D8 003CA4EC 003CA530 003CA608 00000000 00000248 00000003 003CA4F8 00020474

+0000CO 003CA4F8 0004E385 9989B870 00000000 00000008 (7899393 89A297A8 8E572778 40404040 |..Teri.......... Gillispy....

+0000EO 003CA518 003CA520 40404040 00020438 00020418 40404040 8002046C 00404000 007C8004 |..v. [2 N
+000100 003CA538 40404040 40404040 00014040 00542460 E3C2C6C3 003CA548 00040000 D7D3CIC4-TBFC..v..... PLID
+000120 003CA558 EA4D4D740 83819393 85844086 99969440 97999683 8584A499 8540D7D3 C9C4D4D7 [UMP called from procedure PLIDMP
+000140 003CA578 (2404040 003CA554 00250000 40404040 88004040 00542280 003CAA58 6E579B82 [B ..v..... he ool >..b

STATIC FOR PROCEDURE PLIDMP TIMESTAMP: 2 DEC 92 11:26:26

STARTING FROM: 000203B8

+000000 000203B8 E0000300 00020088 00020116 00020188 000201E2 00020254 000202AE 000202BE
+000020 000203D8 000202BE 000202BE 000202BE 80020A38 80020A50 80020A68 80020A80 80020A98
+000040 000203F8 80020ABO 80021340 80021148 80020AC8 800213B8 800213D0 80020AEQ 80020AF8
+000060 00020418 20000002 1F802800 00040008 00000000 000204C8 000FO000 000204D7 00100000
+000080 00020438 000204F3 00100000 00000000 00040000 00000000 00250000 00020608 00110000
+0000A0 00020458 00000000 00020474 91EO91E0 00000005 00000009 00000001 00000003 00000000
+0000CO 00020478 000C8000 0OOOOOOE 0OOC8000 000206DO 000206DO OO3CA320 8002046C 000206D0
+0000EO 00020498 003CA410 8002046C 000206D0 003CA520 8002046C 003CA54C 803CA57C 80020A08

Figure 103. Control Blocks for Active Routines Section of the Dump

244

Automatic variables

To find automatic variables, use an offset from the stack frame of the block in which
they are declared. This information appears in the variable storage map generated
when the MAP compiler option is in effect. If you have not used the MAP option,
you can determine the offset by studying the listing of compiled code instructions.

Static Variables

If your routine is compiled with the MAP option, you can find static variables by
using an offset in the variable storage map. If the MAP option is not in effect, you
can determine the offset by studying the listing of compiled code.

Based variables

To locate based variables, use the value of the defining pointer. Find this value by
using one of the methods described above to find static and automatic variables. If
the pointer is itself based, you must find its defining pointer and follow the chain
until you find the correct value.

The following is an example of typical code for X BASED (P), with P AUTOMATIC:
58 60 D 0OC8 L 6,P

58 EO 6 000 L 14,X
P is held at offset X'C8' from register 13. This address points to X.

Take care when examining a based variable to ensure that the pointers are still
valid.

z/OS V1R5.0 Language Environment Debugging Guide

Area variables
Area variables are located using one of the methods described above, according to
their storage class.

The following is an example of typical code: for an area variable A declared
AUTOMATIC:

41 60 D OF8 LA 6,A

The area starts at offset X'F8' from register 13.

Variables in areas
To find variables in areas, locate the area and use the offset to find the variable.

Contents of parameter lists

To find the contents of a passed parameter list, first find the register 1 value in the
save area of the calling routine’s stack frame. Use this value to locate the
parameter list in the dump. If R1=0, no parameters passed. For additional
information about parameter lists, see either PL/I for MVS & VM Programming
Guide or |VisualAge PL/I for 0S/390 Programming Guidel

Timestamp

If the TSTAMP compiler installation option is in effect, the date and time of
compilation appear within the last 32 bytes of the static internal control section. The
last three bytes of the first word give the offset to this information. The offset
indicates the end of the timestamp. Register 3 addresses the static internal control
section. If the BLOCK option is in effect, the timestamp appears in the static
storage section of the dump.

Control blocks associated with the thread

This section of the dump, shown in [Figure 104 on page 248, includes information
about PL/I fields of the CAA and other control block information.

Chapter 7. Debugging PL/I routines 245

Control Blocks Associated with the Thread:

CAA: 0058C848
+000000 0058C848
+000020 0058C868
+000040 0058C888
+000060 0058C8A8

DUMMY DSA:

0058E040
+000000 FLAGS.... 0000 member. ..
+000010 RI15...... 805905F0 RO.......
+000024 R4....... 00000000 R5.......
+000038 R9....... 00D44A30 RI10......
+00004C NAB...... 003CA018 PNAB.....
+000064 reserved. 00000000 reserved.
+000078 reserved. 00000000 reserved.

CEE3DMP V1 R5.0: PLIDUMP

PL/I TCA APPENDAGE:
+000000 00542030
+000020 00542050
+000040 00542070
+000060 00542090

called

00542030
00000000
005421D8
00000000
00000000

00000000
00000000
00000000
00000000

Enclave Control Blocks:

EDB: 0058AD68
+000000 0058AD68
+000020 0058AD88

MEML: 0058C6B8
+000000 0058C6B8

+000020 0058C6D8 - +00009F

+0000A0 0058C758

C3C5C5C5
0058B0D8

C4C24040
0058B108
00000000 00000000
0058C757

00000000 00000000

File Status and Attributes:

ATTRIBUTES OF FILE:

SYSPRINT

00000800 00542648 003CA000 0044A000
00000000 00000000 00542030 00000000
005421C0 00000000 006CB660 00000000
00000000 006C6660 00000000 006CB200

0000

00000EO8
00000000
00000000
003CA018
00000000
00000000

00000000
00000000
00000000
00000000

80400001
005801E0

00592030

0054A000

BKC..... 000095E8
Rl...... 0058AE14
R6...... 00000000
R11..... 4002073A
reserved. 00000000
MODE..... 00000000

from procedure PLIDMPB.

00000030
00000000
00000000
00000000

0058C6B8
0057F198

00000000

00000000
00000000
0058C848
00000000

0058B3A8
00000000

00000000

same as above

00000000

00000000

00000000
00000000
00000000
00000000

00000000
8057F088

00000000

00000000

00000000 0058C858 00000000 005421A0
00542230 007C8004 005421F8 00000000
006CBBB8 006C66EQ 00000000 00000000
006CB4A0 006CB620 006C7028 04001010

003CA018
000206F0
005801E0
0058C848
00000000 00000000
reserved. 00000000

08/05/95 11:29

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
0058AE14

00000000
00008000
00592030 00000000

00592030 00000000

STREAM OUTPUT PRINT ENVIRONMENT(F BLKSIZE(80) RECSIZE(80) BUFFERS(2))

CONTENTS OF BUFFERS

BUFFER: 007CDF60
+000000 007CDF60
+000020 007CDF80
+000040 007CDFAQ

BUFFER: 007CDFBO
+000000 007CDFBO
+000020 007CDFDO
+000040 007CDFFO

File Control Blocks:
FILE CONTROL BLOCK
+000000 007C8004
+000020 007C8024
+000040 007C8044
+000060 007C8064
DATA CONTROL BLOCK
+000000 007C8090
+000020 007C80BO
+000040 007C80DO

40D7D3C9 C4D4D7C2
40404040 40404040
40404040 40404040

40D7D3C9 C4D4D7C1
40404040 40404040
40404040 40404040

(FCB): 007C8004

00000000 00000000
00000000 41211100
00000000 00000000
00000000 006CBBB8
(DCB) : 007C8090

00000000 00000000
40000001 84000000
00000000 007D94BO

40E2A381
40404040
40404040

40E2A381
40404040
40404040

0056B3CA
82000000
00000000
00000000

00000000
00000048
007CDFBO

DECLARE CONTROL BLOCK (DCLCB): 000206D0
+000000 000206D0 FFFFFFFC 41201000 02D70F00

Process Control Blocks:

PCB: 0057F198

99A38995
40404040
40404040

99A38995
40404040
40404040

005CB5EC
00000104
007CDF72
003CA520

00000000
007D94A0
007CDFBO

00000000

87404040
40404040
40D7D3C9

87404040
40404040
007CE031

000206D0
00500000
003E0001
00000000

00280000
92D5927E
00000050

00000014

40404040
40404040
C4D4D7C1

40404040
40404040
7A958983

007C8090
00000050
003C004F
00000000

027CDF58
00000001
80000001

0008E2E8

40404040
40404040
40E2A381

40404040
40404040
99A38995

40404040
40404040
924BE3C5

40404040
40404040
D9C94040

00000000
007CDF60
00030000
00000000

00000000
E3C600F4
00000000
00000000

00504000
0C5CB7FA
00000000

007D94B0
00090050
00000001

E2D7D9C9 D5E30000

+000000 0057F198 C3C5C5D7 C3C24040 02020220 00000000 00000000 60000000 0057FB30 005C8E10
+000020 0057F1B8 005C75B8 005C2288 005C1C80 00000000 00000000 00000000 0057FB18 0057FB30

MEML: 0057FB30

+000000 0057FB30 00000000 00000000 00592030 00000000 00000000 00000000 00592030 00000000
+000020 0057FB50 - +00009F 0057FBCF

same as above

40020810
00000002
000206C0

reserved. 00542280
00000000
00000000

:13 AM

PLIDMPB Starting

PLIDMPA Starting

PLIDMPA Starting

Figure 104. Control Blocks Associated with the Thread Section of the Dump

246

z/OS V1R5.0 Language Environment Debugging Guide

The CAA

The address of the CAA control block appears in this section of the dump. If the
BLOCK option is in effect, the complete CAA (including the PL/I implementation
appendage) appears separately from the body of the dump. Register 12 addresses
the CAA.

File status and attribute information

This part of the dump includes the following information:

* The default and declared attributes of all open files

» Buffer contents of all file buffers

* The contents of FCBs, DCBs, DCLCBs, I0OCBs, and control blocks for the
process or enclave

PL/I contents of the Language Environment trace table
Language Environment provides three PL/I trace table entry types that contain
character data:
» Trace entry 100 occurs when a task is created.

» Trace entry 101 occurs when a task that contains the tasking CALL statements is
terminated.

» Trace entry 102 occurs when a task that does not contain a tasking CALL
statement is terminated.

The format for trace table entries 100, 101, and 102 is:

—>(100) NameOfCallingTask NameOfCalledTask OffsetOfCallStmt
UserAgrPtr CalledTaskPtr TaskVarPtr EventVarPtr
PriorityPtr CallingR2-R5 CallingR12-R14

—>(101) NameOfReturnTask ReturnerR2-R5 ReturnerR12-R14

—>(102) NameOfReturnTask

For more information about the Language Environment trace table format, see
[‘Understanding the trace table entry (TTE)” on page 118/

Debugging example of PL/I routines

This section contains examples of PL/I routines and instructions for using
information in the Language Environment dump to debug them. Important areas in
the source code and in the dump for each routine are highlighted.

Subscript range error

[Figure 105 on page 248|illustrates an error caused by an array subscript value
outside the declared range. In this example, the declared array value is 10.

This routine was compiled with the options LIST, TEST, GOSTMT, and MAP. It was
run with the TERMTHDACT(TRACE) option to generate a traceback for the
condition.

Chapter 7. Debugging PL/I routines 247

18 NOV 92

15688-235 IBM SAA AD/Cycle PL/I Ver 1 Rel 2 Mod 0
-OPTIONS SPECIFIED
0*PROCESS GOSTMT LIST S STG LC(100) TEST MAP; 00001000
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN);
- SOURCE LISTING
- STMT
0
1 EXAMPLE: PROC OPTIONS(MAIN); 00002000
00003000
2 | DCL Array(10) Fixed bin(31); 00004000
3 DCL (I,Array End) Fixed bin(31); 00005000
00006000
4 On error 00007000
Begin; 00008000
5 On error system; 00009000
6 Call plidump('tbnfs','Plidump called from error ON-unit'); 00010000
7 End; 00011000
00012000
8 (subrg): /* Enable subscriptrange condition*/ 00013000
Lab11: Begin; 00014000
9 Array_End = 20; 00015000
10 Do I =1 to Array_End; /* Loop to initialize array */ 00016000
11 Array(I) = 2; /* Set array elements to 2 */ 00017000
12 End; 00018000
13 End Lab11; 00019000
00020000
14 |End Example; 00021000
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN);
- VARIABLE STORAGE MAP
-IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK
I 1 200 C8 AUTO EXAMPLE
ARRAY_END 1 204 cC AUTO EXAMPLE
ARRAY 1 208 DO AUTO EXAMPLE
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE: PROC OPTIONS(MAIN);

- OBJECT LISTING

PAGE

PAGE

PAGE

PAGE

1

2

3

6

Figure 105. Example of Moving a Value Outside an Array Range

[Figure 106 on page 249 shows sections of the dump generated by a call to

PLIDUMP.

248 2/0S V1R5.0 Language Environment Debugging Guide

CEE3DMP V1 R5.0: PLIDUMP called from error

PLIDUMP was called from statement number 6 at offset +000000D6

Information for enclave EXAMPLE
Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

ON-unit.

02/05/

PM....... 0100
GPRO..... 00000000 GPRI..... 00077448 GPR2..... 053AD9AF GPR3..... 853AD514
GPR4..... 00000001 GPR5..... 053AD314 GPR6..... 80077454 GPR7..... 00000000
GPR8..... 00000001 GPRI..... 80000000 GPR10.... 00077470 GPR11.... 00OF7490
GPR12.... 0006A520 GPR13.... 000773C8 GPR14.... 80060712 GPR15.... 853F7918
FPRO..... 4D000000 00043C31 FPR2..... 00000000 00000000
FPR4..... 00000000 00000000 FPR6..... 00000000 00000000
Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Load
005359A0 CEEKKMRA 00654438 +00000748 CEEKKMRA 00654438 +00000748 CELE
006D9810 LIBRARY(PLI) 005CBE98 +000000B2 LIBRARY(PLI) 005CBE98 +000000B2 CEEP
CELE3
005358A0 EXAMPLE 00020080 +000001BE ERR ON-UNIT 00020168 +000000D6
00535698 IBMRERPL 007CB410 +00000528 IBMRERPL 007CB410 +00000528
005355B0 CEEEV010 005B5000 +000000E8 CEEEVO10 005B5000 +00000OE8
006C3018 CEEHDSP 005F6D00 +00000970 CEEHDSP 005F6D00 +00000970
00535428 IBMRERRI 007CB040 +00000254 IBMRERRI 007CB040 +00000254
00535358 EXAMPLE 00020080 +00000296 LABL1: BEGIN 00020258 +000000BE
00535258 EXAMPLE 00020080 +000000D0 EXAMPLE 00020088 +000000C8
005351B0 IBMRPMIA 007CABDO +000002FA IBMRPMIA 007CABDO +000002FA
005350C8 CEEEVO10 005B5000 +000001FE CEEEVO10 005B5000 +000001FE
00535018 CEEBBEXT 005E55F0 +0000012E CEEBBEXT 005E55F0 +0000012E
Condition Information for Active Routines
Condition Information for IBMRERRI (DSA address 00535428)
CIB Address: 006C33C8
Current Condition:
1BM0930S
Original Condition:
IBM0421S ONCODE=520 The SUBSCRIPTRANGE condition was raised.
Location:
Program Unit: IBMRERRI Entry: IBMRERRI Statement: Offset: +00000254
Control Blocks for Active Routines:
DYNAMIC SAVE AREA (EXAMPLE): 00535258
+000000 00535258 (0250000 005351B0 00000000 4E020152 00020258 00535358 00535258
+000020 00535278 00020350 0002053C 00535258 00535328 0002053C 00020408 00000001
+000040 00535298 00000005 006F3848 006D9410 00535358 00535358 91E091A0 00000000
+000060 005352B8 00000000 00000000 00000000 0001 00535310 00000200 0OAOO001
+000080 005352D8 00000000 00000000 00000000 0000 00000000 00000000 00O
+0000A0 005352F8 00000000 00000000 00000000 000 00000000 00000000 0CO10000
+0000C0 00535318 00535328 000203A4 0000000B 00000014 00000002 00000002 00000002
+0000EQ 00535338 00000002 00000002 00000002 00000002 00000002 00000002 0000

95 4:04:12 PM Page: 1

from ERROR ON-unit with entry address 00020168

Service Statement Status

38 Call

LPKA Call

8

6 Call

Call

Call

Call

Exception

11 Call

8 Call

Call

Call

Call
4E020140
00020088
00020408
00000000
00000000
00000000
00000002
00000000

Figure 106. Sections of the Language Environment Dump

To debug this routine, use the following steps:

1. In the dump, PLIDUMP was called by the ERROR ON-unit in statement 6. The
traceback information in the dump shows that the exception occurred following
statement 11.

Locate the Original Condition message in the Condition Information for Active

Routines section of the dump. The message is IBM0421S ONCODE=520 The
SUBSCRIPTRANGE condition was raised. This message indicates that the
exception occurred when an array element value exceeded the subscript range
value (in this case, 10). For more information about this message, see

[Language Environment Run-Time Messages,

3. Locate statement 9 in the routine in [Figure 105 on page 248 The instruction is
Array_End = 20. This statement assigns a 20 value to the variable Array_End.

Chapter 7. Debugging PL/I routines 249

4. Statement 10 begins the DO-loop instruction Do I = 1 to Array_End. Since the
previous instruction (statement 9) specified that Array End = 20, the loop in
statement 10 should run until I reaches a 20 value.

The instruction in statement 2, however, declared a 10 value for the array

range. Therefore, when the | value reached 11, the SUBSCRIPTRANGE
condition was raised.

The following steps provide another method for finding the value that raised the
SUBSCRIPTRANGE condition.

1. Locate the offset of variable | in the variable storage map in [Figure 105 on page|
Use this offset to find the | value at the time of the dump. In this example,
the offset is X'C8'.

2. Now find offset X'C8' from the start of the stack frame in [Figure 106 on page]
-249

The block located at this offset contains the value that exceeded the array
range, X'B' or 11.

Calling a nonexistent subroutine

demonstrates the error of calling a nonexistent subroutine. This routine
was compiled with the LIST, MAP, and GOSTMT compiler options. It was run with
the TERMTHDACT(DUMP) run-time option to generate a traceback.

15688-235 IBM SAA AD/Cycle PL/I Ver 1 Rel 2 Mod 0 25 NOV 92 13:47:13 PAGE 1
-OPTIONS SPECIFIED
0*PROCESS GOSTMT LIST S STG LC(100) TEST MAP; 00001000
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 2
- SOURCE LISTING
- STMT
0
1 |EXAMPLEl: PROC OPTIONS(MAIN); 00002000
00003000
2 DCL Prog01 entry external; 00004000
00005000
3 On error 00006000
Begin; 00007000
4 On error system; 00008000
5 Call plidump('tbnfs','Plidump called from error ON-unit'); 00009000
6 End; 00010000
00011000
7 Call Prog0l; /* Call external program PROGO1 */ 00012000
00013000
8 |End Examplel; 00014000
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 3
- STORAGE REQUIREMENTS
-BLOCK, SECTION OR STATEMENT TYPE LENGTH (HEX) DSA SIZE (HEX)
-EXAMLE11 PROGRAM CSECT 444 1BC
EXAMLE12 STATIC CSECT 292 124
EXAMPLE1 PROCEDURE BLOCK 210 D2 192 co
BLOCK 2 STMT 3 ON UNIT 232 E8 256 100
15688-235 IBM SAA AD/Cycle PL/I EXAMPLE1: PROC OPTIONS(MAIN); PAGE 4

STATIC INTERNAL STORAGE MAP

Figure 107. Example of Calling a Nonexistent Subroutine

[Figure 108 on page 251| shows the traceback and condition information from the
dump.

250 2/0S V1R5.0 Language Environment Debugging Guide

CEE3DMP V1 R5.0: PLIDUMP called from error ON-unit.

12/05/95 1:57:32 PM

Page: 1

PLIDUMP was called from statement number 5 at offset +000000D6 from ERROR ON-unit with entry address 00020154

Information for enclave EXAMPLE1

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

PM.. ... 0100

GPRO..... 00000000 GPRI..... 00077448 GPR2..... 053AD9AF GPR3..... 853AD514
GPR4..... 00000001 GPR5..... 053AD314 GPR6..... 80077454 GPR7..... 00000000
GPR8..... 00000001 GPRI..... 80000000 GPR10.... 00077470 GPR11.... 000F7490
GPR12.... 0006A520 GPR13.... 000773C8 GPR14.... 80060712 GPR15.... 853F7918
FPRO..... 4D000000 00043C31 FPR2..... 00000000 00000000

FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

Figure 108. Sections of the Language Environment Dump (Part 1 of 2)

Traceback:
DSA Addr Program Unit PU Addr
003FC708 CEEKKMRA 004AB438
006D4680 LIBRARY(PLI) 004931C0
003FC608 EXAMPLE1 00020080
003FC400 IBMRERPL 006E33D8
003FC318 CEEEVO10 0047C000
00623018 CEEHDSP 005A1D0O0O
003FC258 EXAMPLE1l 00020080
003FC1BO IBMRPMIA 006E2BA8
003FCOC8 CEEEVO10 0047C000
003FCO18 CEEBBEXT 005905F0

PU Offset
+00000748
+000000B2
+000001AA
+00000528
+0000011C
+000009B8
+000000C0
+00000316
+000003DE
+0000012E

Condition Information for Active Routines
Condition Information for EXAMPLE1 (DSA address 003FC258)

CIB Address: 006233C8
Current Condition:

CEE3201S The system detected an Operations exception.

Location:

Program Unit: EXAMPLE1l Entry: EXAMPLE1l Statement: 7 Offset:

Machine State:

ILC..... 0003 Interruption Code.....
PSW..... FFE40001 CEOO0006

GPRO..... 003FC318 GPRI..... 00000000
GPR4..... 0002036C GPR5..... 00000000
GPR8..... 000202B0 GPRI..... 0002008C
GPR12.... 00574848 GPR13.... 003FC258

Entry E Addr E Offset Statement Status
CEEKKMRA 004AB438 +00000748 Call
LIBRARY(PLI) 004931C0 +000000B2 Call
ERR ON-UNIT 00020154 +000000D6 5 Call
IBMRERPL 006E33D8 +00000528 Call
CEEEVO10 0047C000 +0000011C Call
CEEHDSP 005A1D00 +000009B8 Call
EXAMPLE1 0002008C +000000B4 7 Exception
IBMRPMIA 006E2BA8 +00000316 Call
CEEEVO10 0047C000 +000003DE Call
CEEBBEXT 005905F0 +0000012E Call
+000000C0

0001
GPR2..... 4E020134 GPR3..... 00020240
GPR6..... 003FC310 GPR7..... 0002036C
GPR10.... 00567198 GPR11.... 00000003
GPR14.... 4E020142 GPR15.... 00000000

Figure 108. Sections of the Language Environment Dump (Part 2 of 2)

To understand the traceback and debug this example routine, use the following

steps:

1. Find the Current Condition message in the Condition Information for Active

Routines section of the dump. The message is CEE3201S.

The system

detected an Operation exception. For more information about this message,

see [z/0S Language Environment Run-Time Messages,

This section of the dump also provides such information as the name of the
active routine and the current statement number at the time of the dump.

Chapter 7. Debugging PL/I routines

251

2. Locate statement 7 in the routine (Figure 107 on page 250)). This statement
calls subroutine Prog01. The message CEE3201S, which indicates an
operations exception, was generated because of an unresolved external
reference.

3. Check the linkage editor output for error messages.

Divide-by-Zero error

Figure 109 demonstrates a divide-by-zero error. In this example, the main PL/I
routine passed bad data to a PL/I subroutine. The bad data in this example is 0,
and the error occurred when the subroutine SUB1 attempted to use this data as a

divisor.
- SOURCE LISTING
- STMT
0
1 |SAMPLE: PROC OPTIONS(MAIN) ; 00002000
00003000
2 On error 00004000
begin; 00005000
3 On error system; /* prevent nested error conditions */ 00006000
4 Call PLIDUMP('TBC','PLIDUMP called from error ON-unit'); 00007000
5 Put Data; /* Display variables */ 00008000
6 End; 00009000
00010000
7 DECLARE 00011000
A_number Fixed Bin(31), 00012000
My_Name Char(13), 00013000
An_Array(3) Fixed Bin(31) init(1,3,5); 00014000
00015000
8 Put skip Tist('Sample Starting'); 00016000
9 A_number = 0; 00017000
10 My Name = 'Tery Gillaspy'; 00018000
00019000
11 Call Subl(a_number, my name, an_array); 00020000
00021000
12 SUB1: PROC(divisor, namel, Arrayl); 00022000
13 Declare 00023000
Divisor Fixed Bin(31), 00024000
Namel Char(13), 00025000
Arrayl(3) Fixed Bin(31); 00026000
00027000
14 Put skip Tist('Subl Starting'); 00028000
15 Arrayl(1l) = Arrayl(2) / Divisor; 00029000
16 Put skip Tist('Subl Ending'); 00030000
17 End SUB1; 00031000
00032000
18 Put skip Tist('Sample Ending'); 00033000
19 |End; 00034000

Figure 109. PL/I Routine with a Divide-by-Zero Error

Since variables are not normally displayed in a PLIDUMP dump, this routine

included a PUT DATA statement, which generated a listing of arguments and
variables used in the routine. [Figure 110[shows this output.

1Sample Starting
Subl Starting A_NUMBER= 0 MY_NAME='Tery Gillaspy' AN_ARRAY(1)= 1
AN_ARRAY (2) = 3 AN_ARRAY (3) = 5;

Figure 110. Variables from Routine SAMPLE

252 2/0S V1R5.0 Language Environment Debugging Guide

The routine in|Figure 109 on page 252|was compiled with the LIST compiler option,

which generated the object code listing shown in|Figure 111

- OBJECT LISTING

* STATEMENT NUMB
000372 58 BO D
000376 58 40 B
00037A 58 90 3
00037E 5C 80 4
000382 58 70 3
000386 5C 60 4
00038A 58 80 D
00038E 58 60 B
000392 5F 60 4
000396 58 E7 6
00039A 8E EO O
00039E 5D EO 8
0003A2 50 F9 6

ER

0C8
004
0AC
004
0cC
004
0Co
000
000
000
020
000
000

ror—r=2r=2rrrr—

SRDA

ST

11,200(0,13)
4,4(0,11)
9,172(0,3)
8,4(0,4)
7,204(0,3)
6,4(0,4)
8,192(0,13)
6,0(0,11)
6,0(0,4)

14,V0. .ARRAY1(7)
14,32
14,DIVISOR
15,V0. .ARRAY1(9)

Figure 111. Object Code Listing from Example PL/I Routine

[Figure 112 on page 254] shows the Language Environment dump for routine

SAMPLE.

Chapter 7. Debugging PL/I routines

253

CEE3DMP V1 R5.0: PLIDUMP called from error ON-unit.

02/05/95 3:17:13 PM

Page:

PLIDUMP was called from statement number 4 at offset +000000BE from ERROR ON-unit with entry address 0002022C

Information for enclave SAMPLE

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:
PM....... 0100
GPRO..... 00000000 GPRI..... 00077448 GPR2.....
GPR4..... 00000001 GPR5..... 053AD314 GPR6.....
GPR8..... 00000001 GPRI..... 80000000 GPR10...
GPR12.... 0006A520 GPR13.... 000773C8 GPR14
FPRO..... 4D000000 00043C31 FPR2.....
FPR4..... 00000000 00000000 FPR6.....
Traceback:
DSA Addr Program Unit PU Addr PU Offset Entr
004C58A0 CEEKKMRA 00572438 +00000748 CEEK
004BD680 LIBRARY(PLI) 00558498 +000000B2 LIBR
CELE38
004C5778 SAMPLE 00020080 +0000026A ERR
004C5570 IBMRERPL 006D7470 +00000528 IBMR
004C5488 CEEEV0O10 00545000 +000000E8 CEEE
00675018 CEEHDSP 0059AD58 +000009DC CEEH
004C5388 SAMPLE 00020080 +0000039E SUB1
004C5258 SAMPLE 00020080 +0000015C SAMP
004C51B0 IBMRPMIA 006D6BB8 +000003A2 IBMR
004C50C8 CEEEVO10 00545000 +000001FE CEEE
004C5018 CEEBBEXT 005895F0 +0000012E CEEB

Condition Information for Active Routines
Condition Information for SAMPLE (DSA address 004C5388)
CIB Address: 006753C8
Current Condition:
IBMO281S A prior condition was promoted to the ERROR condition.

Original

Condition:

053AD9AF GPR3.....
80077454 GPR7.....
00077470 GPR11
. 80060712 GPR15
00000000 00000000
00000000 00000000
y E Addr
KMRA 00572438
ARY (PLI) 00558498
ON-UNIT 0002022C
ERPL 006D7470
V010 00545000
DSP 0059AD58
00020348
LE 00020088
PMIA 006D6BB8
V010 00545000
BEXT 005895F0

CEE3209S The system detected a Fixed Point divide exception.

Location:

Program Unit: SAMPLE Entry: SUB1 Statement: 15 Offset: +0000039E
Machine State:

GPR12..

. 0002

Interruption Code

. FFE40009 AE020422

004C5488 GPRI.
00020534 GPR5.
.. 004C5328 GPR9.
.. 00585848 GPR13

DSA for SUB1: 004C5388

+000000
+000010
+000024
+000038
+00004C
+000064
+000078

FLAGS.... 8025

R15...... 00000003
R4....... 00020534
R9....... 00000004
NAB...... 004C5488

reserved. 00000000
reserved. 00000000

..... 0009
.... 004C5460 GPR2.
.... 004C5258 GPR6.
.... 00000004 GPR10
.... 004C5388 GPR14
member... 0000
RO....... 004C5488
RS...uunn 004C5258
R10...... 00000003
PNAB..... 004C5488

reserved. 00000000
reserved. 00000000

4E0203B4
004C532C
.... 00000003
.... 00000000

0045258
004C5460
004C532C
...... 0045320
reserved. 91EQ91EQ
MODE 00000000

853AD514
00000000

. 000F7490
. 853F7918

E Offset
+00000748
+000000B2

+000000BE
+00000528
+000000E8
+000009DC
+000000D6
+00000154
+000003A2
+000001FE
+0000012E

0002
0000
. 004C
. 0000

004C525
reserve

Load
CELE38
CEEPLPKA

0478
0008
5320
0003

00000000
4E0203B4
00000008
.. 00585848
8 00000000
d. 00000000

Service Statement Status

Call
Call

Call
Call
Call
Call
15 Exception

11 Call
Call
Call
Call

00000000
00020478
004C5328

reserved. 004BD280
00000000
00000200

1

Figure 112. Language Environment Dump from Example PL/I Routine (Part 1 of 2)

254

z/OS V1R5.0 Language Environment Debugging Guide

CEE3DMP V1 R5.0: PLIDUMP called from error
CIB for SUBL: 006753C8

+000000
+000020
+000040
+000060
+000080
+0000A0
+0000C0
+0000EQ
+000100

006753C8
006753E8
00675408
00675428
00675448
00675468
00675488
006754A8
006754C8

< DYNAMIC SAVE AREA

+000000
+000020
+000040
+000060
+000080
+0000A0
+0000C0
+0000EQ

004C5388
004C53A8
004C53C8
004C53E8
004C5408
004C5428
004C5448
004C5468

C3C9C240
00000000
00000000
00000000
- +00009F
00000000
00000000
004C5258 0000000A
00000000 00000000
(SUB1): ©04C5388

80250000 004C5258
00020478 00020534
004C5320 00585848
00000000 00000000
00000000 C9C2D4D9
005B88C8 00000000
004C5328 004C5318
00000000 80020524

00000000
00675008
004C5388
00000000
00675467
00000000
00000000

DSA for SAMPLE: 004C5258

+000000
+000010
+000024
+000038
+00004C
+000064
+000078

FLAGS...

reserved. 00000000
reserved. 00000001

. C025

. 00020348
. 00000005
. 00020088
. 004C5388

DYNAMIC SAVE AREA (SAMPLE): 004C5258

+000000
+000020
+000040
+000060
+000080
+0000A0
+0000C0
+0000EQ
+000100
+000120

STATIC FOR PROCEDURE SAMPLE

004C5258
004C5278
004C5298
004C528B8
004C52D8
004C52F8
004C5318
004C5338
004C5358
004C5378

€0250000
00020478
00578198
00000000
00000000
00000000
004C533C
00000005
004C5360
00000000

004C51B0
00000005
00585848
00000000
00000000
00000000
00000000
E38599A8
00000000
00000000

STARTING FROM: 00020478

+000000
+000020
+000040
+000060
+000080
+0000A0
+0000C0
+0000E0
+000100
+000120
+000140
+000160
+000180
+0001A0
+0001CO
+0001EQ
+000200
+000220

CEE3DMP V1 R5.0: PLIDUMP

+000240
+000260
+000280
+0002A0

00020478
00020498
00020488
000204D8
000204F8
00020518
00020538
00020558
00020578
00020598
000205B8
000205D8
000205F8
00020618
00020638
00020658
00020678
00020698

00020688
000206D8
000206F8
00020718

E00002A4
000203B4
80020B18
20000002
000205C0
000205FE
00000004
004C5328
80020A70
00020738
7899393
83819393
8199A389
0C960000
000204DA
000000CO
00000000 0008C1D5
00000001 OODE00O2
called from error

00020088
00020384
800213A8
1F800000
000D0000
000B000O
00000003
004C5318
00020738
00000000
81A297A8
85844086
9587E2A4
00000000
000000D0
00000000

01A40002 0002022C
01020006 0114000C
00DEOO10 011C0011
7AFOF540 80000010

member. ..

TIMESTAMP:

ON-unit.

00000000
00030C89
00020422
00000000

00000000
004C5388
00000064
00000000

00000000
004C5258
004BD280
00000000
D6D7C1C1
004C54FC
004C5320
00400000

0000

00000000
004C5258
004BD280
00000000
00000000
00000000
004C5330
40C78993
000204E0
00010000

00020130
000203B4
800211B0
000205A4
00000000
91EQ91E0
00000001
8045320
80000000
80020524
E2819497
99969440
82F140C5
00020634
00000000
0007D4E8
6DC1D9D9
00E20008
ON-unit.

00000112
00020348
011C0011
00020000

004C5388
004C5258
00000003
004C5388
reserved. 00000000
reserved. 00000000

15 JAN 93

0100002
59C3C5C5
00586028
00000000

00000000
00000000
0000000A
00000000

same as above

00000000
004C5388
00000000
00000000

00000000
004C532C
004C5488
00000000
000205A4
00578198
00000001
007D1004

5E0201DE
004C5330
004C5388
00000001
00000000
00000000
00020534
9381A297
000204D8
004BD460

15

00020166
80020AA0
80020B30
000FO000
00030000
00000001
00000002
00020738
00000000
E2819497
938540C5
85999996
95848995
00020650
0008C16D
6DD5C1D4
C1E80000
01200009

000206E0
0000012C
OEOEOEOE
00000000

44230000
00026041F
FFFFFFFC
00000000

00000003
00000008
004C5488
00000000
000F0000
00675250
004C5460
00000000

00020348
0045320
004C5388
004C5310
00000000
00000000
00000000
A8000000
00000000
80250000

:10:05

0002022C
80020AB8
80021420
00000000
00000000
00000003
00020738
00205240
80020620
938540E2
95848995
9940D6D5
87000000
0002066C
D5E4D4C2
€5000000
00000001
0128000A

00000002
00020704
F1F540D1
01000001

00000000
00000004
00000000
00000000

00000000
00000000
00000000
00000000

004C5488
004C5328
91EQ91EQ
00000200
00675188
00675258
00000003
00000000

004C5388
00000001
91E091E0
00000200
00000000
00000000
00000000
00000000
80020524
004C5258

000202A0
80020ADO
80021438
00000000
00210000
00000005
00020738
004C586C
00020738
A38199A3
87E3C2C3
60A49589
00000000
00000000
C5D90000
81000101
00020088
012E000B

00740003
0000000C
C1D540F9
00020088

00000000 00020610
reserved. 004C5310

02/65/95 3:17:13

00030119
004(C5258
00000000
00000000

59C9C2D4
00545000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000001
00000000
00000000

004C5460
00000004
004C5258
00000000
004C56A0
006DB968
00020510
00010000

4E0203B4
00000003
00000000
00000000
5E5C20CA
006DAF44
000204D8
004BD460

00000000
4E020166
0045320
00585848

00020558 4E020166
00020088 00000003
00000000 00020610
00000001 00000000
00000000 00000000
0C010000 00000000
00000001 00000003
00000000 00000000
00400000 007D1004
00000000 00000000

00020348
80020AE8
80020848
00000000
000205F1
00000000
004C5360
8045898
004C5460
899587E3
D7D3C9C4
A3E2A482
0C160000
00000000
81000001
000204DA
000001A4 000206BC
01560012 01940013
02/05/95 3:17:13

000203B4
80020B00
80020B60
00020534
00000000
00000004
80020524
00000000
80020524
8599A840
E4D4D740
F140E2A3
0002022C
85000001
000204D8
000000C8

00780004 00CO0005
006CO00E OOAAOOOF
F34040F1 F57AF1FO
00020758 00000000

PM Page: 5

00000001

reserved. 004BD280
00000000
00000200

............ Sample StartingTery
GillaspySample EndingTBCPLIDUMP
called from error ON-unitSubl St
artingSubl Ending...............

.......... MY_NAME...a..........H

15 JAN 93
................... hooooae

15:10

Figure 112. Language Environment Dump from Example PL/I Routine (Part 2 of 2)

To understand the dump information and debug this routine, use the following steps:
1. Notice the title of the dump:PLIDUMP called from error ON-unit. This was the

title specified when PLIDUMP was invoked, and it indicates that the ERROR
condition was raised and PLIDUMP was called from within the ERROR ON-unit.

Locate the messages in the Condition Information section of the dump.

There are two messages. The current condition message indicates that a prior
condition was promoted to the ERROR condition. The promotion of a condition

Chapter 7. Debugging PL/I routines

255

256

occurs when the original condition is left unhandled (no PL/I ON-units are
assigned to gain control). The original condition message is CEE3209S. The
system detected a Fixed Point divide exception. The original condition
usually indicates the actual problem. For more information about this message,
see |z/0S Language Environment Run-Time Messages|

In the traceback section, note the sequence of calls in the call chain. SAMPLE
called SUB1 at statement 11, and SUB1 raised an exception at statement 15,
PU offset X'39E".

Find the statement in the listing for SUB1 that raised the ZERODIVIDE
condition. If SUB1 was compiled with GOSTMT and SOURCE, find statement
15 in the source listing.

Since the object listing was generated in this example, you can also locate the
actual assembler instruction causing the exception at offset X'39E' in the object
listing for this routine, shown in [Figure 111 on page ZSSl Either method shows

that divisor was used as the divisor in a divide operation.

You can see from the declaration of SUB1 that divisor is a parameter passed
from SAMPLE. Because of linkage conventions, you can infer that register 1 in
the SAMPLE save area points to a parameter list that was passed to SUB1.
divisor is the first parameter in the list.

In the SAMPLE DSA, the R1 value is X'20558'". This is the address of the
parameter list, which is located in static storage.

Find the parameter list in the stack frame; the value of the first parameter is
X'00000000'. Thus, the exception occurred when SAMPLE passed a 0 value
used as a divisor in subroutine SUB1.

z/OS V1R5.0 Language Environment Debugging Guide

Chapter 8. Debugging under CICS

This chapter provides information for debugging under the Customer Information
Control System (CICS). The following sections explain how to access debugging
information under CICS, and describe features unique to debugging under CICS.

Use the following list as a quick reference for debugging information:

» Language Environment run-time messages (CESE Transient Data Queue)
» Language Environment traceback (CESE Transient Data Queue)

» Language Environment dump output (CESE Transient Data Queue)

* CICS Transaction Dump (CICS DFHDMPA or DFHDMPB data set)

» Language Environment abend and reason codes (system console)

* Language Environment return codes to CICS (system console)

If the EXEC CICS HANDLE ABEND command is active and the application, or
CICS, initiates an abend or application interrupt, then Language Environment does
not produce any run-time messages, tracebacks, or dumps.

If EXEC CICS ABEND NODUMP is issued, then no Language Environment dumps
or CICS transaction dumps are produced.

Accessing debugging information

The following sections list the debugging information available to CICS users, and
describe where you can find this information.

Under CICS, the Language Environment run-time messages, Language
Environment traceback, and Language Environment dump output are written to the
CESE transient data queue. The transaction identifier, terminal identifier, date, and
time precede the data in the queue. For detailed information about the format of
records written to the transient data queue, see|z/OS Language Environment
|Programming Guidd.

The CESE transient data queue is defined in the CICS destination control table
(DCT). The CICS macro DFHDCT is used to define entries in the DCT. See[CICY
[Resource Definition Guidd for a detailed explanation of how to define a transient
data queue in the DCT. If you are not sure how to define the CESE transient data
queue, see your system programmer.

Locating Language Environment run-time messages

Under CICS, Language Environment run-time messages are written to the CESE
transient data queue. A sample Language Environment message that appears when
an application abends due to an unhandled condition from an EXEC CICS

command is:
PO39UTV9 19910916145313 CEE3250C The System or User ABEND AEIO was issued.
PO39UTV9 19910916145313 From program unit UT9CVERI at entry point UT9CVERIT

+0000011E at PO39UTV9 19910916145313
at offset address 0006051E.

Locating the Language Environment traceback

Under CICS, the Language Environment traceback is written to the CESE transient
data queue. Because Language Environment invokes your application routine, the
Language Environment routines that invoked your routine appear in the traceback.
[Figure 113 on page 258 shows an example Language Environment traceback

© Copyright IBM Corp. 1991, 2004 257

written to the CESE transient data queue. Data unnecessary for this example has
been replaced by ellipses.

PO23T2AB
PO23T2AB
1PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB
PO23T2AB

19911011084413 CEE3211S The system detected a Decimal-divide exception.

19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413
19911011084413

CEE3DMP V1 R3.0: Condition processing resulted in the unhandled condition.

From program unit T2AB at entry point T2AB at offset +000014A8 at address OA9444E0.
08/30/01 09:23:10

Information for enclave T2AB

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:

PM....... 0100
GPRO..... 00000000 GPRI..... 00077448 GPR2..... 053AD9AF GPR3..... 853AD514
GPR4..... 00000001 GPR5..... 053AD314 GPR6..... 80077454 GPR7..... 00000000
GPR8..... 00000001 GPR9..... 80000000 GPR10.... 00077470 GPR11l.... 000F7490
GPR12.... 0006A520 GPR13.... 000773C8 GPR14.... 80060712 GPR15.... 853F7918
FPRO..... 4D000000 00043C31 FPR2..... 00000000 00000000
FPR4..... 00000000 00000000 FPR6..... 00000000 00000000

Traceback:
DSA Addr Program Unit PU Addr Entry E Addr E Offset Statement Load Mod Service Status
0A9A5630 CEEHDSP 001DB878 9101 05500028 +00000152 Call
OA9AD1DO CEECGEX 001D6BFO CB2C91601 055001E0 +000003D0 Call
OA9ABD88 T2AB 0A943038 IGZCEV5 04CF9000 +00000836 Call
0A9ADO98 CEECRINV 001D9F90 CEECRINV 0522A708 +0000036E Call
0A9ADO10 CEECCICS 001C6370 CEECCICS 0001FF28 +00000456 CEECCICS UQO00568 Call

Figure 113. Language Environment Traceback Written to the Transient Data Queue

Locating the Language Environment dump

Under CICS, the Language Environment dump output is written to the CESE
transient data queue. For active routines, the Language Environment dump contains
the traceback, condition information, variables, storage, and control block
information for the thread, enclave, and process levels. Use the Language
Environment dump with the CICS transaction dump to locate problems when
operating under CICS.

For a sample Language Environment dump, see [‘Understanding the Language]
[Environment dump” on page 45,

Using CICS transaction dump

258

The CICS transaction dump is generated to the DFHDMPA or DFHDMPB data set.
The offline CICS dump utility routine converts the transaction dump into formatted,
understandable output.

The CICS transaction dump contains information for the storage areas and
resources associated with the current transaction. This information includes the
Communication Area (COMMAREA), Transaction Work Area (TWA), Exec Interface
Block (EIB), and any storage obtained by the CICS EXEC commands. This
information does not appear in the Language Environment dump. It can be helpful
to use the CICS transaction dump with the Language Environment dump to locate
problems when operating under CICS.

When the location of an error is uncertain, it can be helpful to insert EXEC CICS
DUMP statements in and around the code suspected of causing the problem. This
generates CICS transaction dumps close to the error for debugging reference.

For information about interpreting CICS dumps, see |CICS Problem Determinatior]

z/OS V1R5.0 Language Environment Debugging Guide

Using CICS register and program status word contents

When a routine interrupt occurs (code = ASRA) and a CICS dump is generated,
CICS formats the contents of the program status word (PSW) and the registers at
the time of the interrupt. This information is also contained in the CICS trace table
entry marked SSRP *= EXEC* — ABEND DETECTED. For the format of the information
contained in this trace entry, see CICS Data Areas, KERRD - KERNEL ERROR
DATA.

The address of the interrupt can be found from the second word of the PSW, giving
the address of the instruction following the point of interrupt. The address of the
entry point of the function can be subtracted from this address. The offset compared
to this listing gives the statement that causes the interrupt.

For C routines, you can find the address of the entry point in register 3.

If register 15 is corrupted, the contents of the first load module of the active enclave
appear in the program storage section of the CICS transaction dump.

Using Language Environment abend and reason codes

An application can end with an abend in two ways:

» User-specified abend (that is, an abend requested by the assembler user exit or
the ABTERMENC run-time option).

» Language Environment-detected unrecoverable error (in which case there is no
Language Environment condition handling).

When Language Environment detects an unrecoverable error under CICS,
Language Environment terminates the transaction with an EXEC CICS abend. The
abend code has a number between 4000 and 4095. A write-to-operator (WTQO) is
performed to write a CEE1000S message to the system console. This message
contains the abend code and its associated reason code. The WTO is performed
only for unrecoverable errors detected by Language Environment. No WTO occurs
for user-requested abends.

Although this type of abend is performed only for unrecoverable error conditions, an
abend code of 4000-4095 does not necessarily indicate an internal error within
Language Environment. For example, an application routine can write a variable
outside its storage and corrupt the Language Environment control blocks.

Possible causes of a 4000-4095 abend are corrupted Language Environment
control blocks and internal Language Environment errors. For more information
about abend codes 4000-4095, see |z/0OS Language Environment Run-Timd
Following is a sample Language Environment abend and reason code.
Abend codes appear in decimal, and reason codes appear in hexadecimal.

12.34.27 JOB05585 IEF450I XCEPIIO3 GO CEPIIO3 - ABEND=S000 U4094 REASON=0000002C

Using Language Environment return codes to CICS

When the Language Environment condition handler encounters a severe condition
that is specific to CICS, the condition handler generates a CICS-specific return
code. This return code is written to the system console.

Possible causes of a Language Environment return code to CICS are:
* Incorrect region size
* Incorrect DCT

Chapter 8. Debugging under CICS 259

* Incorrect CSD definitions

For a list of the reason codes written only to CICS, see|z/OS Language|
|Environment Run-Time Messages. Following is a sample of a return code that was
returned to CICS

+DFHAP12001

LEO3CCO1 A CICS request to Language Environment has failed. Reason
code '0012030'.

Activating Language Environment feature trace records under CICS

Activating Language Environment feature trace records under CICS will allow users
to monitor and determine the activity of a transaction. By activating the feature trace
records, Level 2 trace points are added insideLanguage Environment at these
significant points:

* Event Handle

» Set anchor

* Gives R13 and parameters before call

These trace points are useful for any support personnel that needs to know what
happpened inside Language Environment from a CICS call.

The function will be enabled by the existing CICS transactions. A user must enable
the AP domain level 2 in order to include the Language Environment trace points.
For more information on activating the CICS trace, see|CICS Diagnosis Referencel

Every time CICS calls Language Environment, the feature trace is activated under
the Extended Run-Time Library Interface (ERTLI). The trace can bee seen in CICS
transaction dumps. Feature trace entries are formatted in a similar way to CICS
trace items. There are three formats: ABBREV, SHORT & FULL. The ABBREV
version just formats the heading line for each trace point and is laid out in a similar
way to CICS trace entries. For example,

00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036

o b b b b b b b b b e b b e

AP
AP
AP
AP

FT
FT
FT
FT
AP
AP
AP
FT
FT
AP
AP
FT
AP
AP

1940
1948
1949
1948
1014
1013
1101
1018
1008
1948
1949
1948
1012
1102
1949
1948
1009
1949
1941

APLI
APLI
APLI
APLI

Lang.
Lang.
Lang.
Lang.
Lang.

APLI
APLI
APLI
Lang

Lang.

APLI
APLI

Lang.

APLI
APLI

ENTRY START_PROGRAM NAMETEST, CEDF, FULLAPI,EXEC,NO,0678FABC,00000000 , 00000000,1,NO =000334=
EVENT CALL-TO-LE/370 Thread_Initialization NAMETEST =000339=
EVENT RETURN-FROM-LE/370 Thread_Initialization OK NAMETEST =000340=
EVENT CALL-TO-LE/370 Rununit_Initialization NAMETEST =000343=
Env. CEEZCREN EVENT CEEEVNT-ID(PRCINIT) R13(06COQE10), 00000000 =000344=
Env. CEEZCREN EVENT CEEEVNT-ID(OPTP) R13(06COOE10), 06CO49BO, 07500F28, 06C0403C, 06CO10B4 =000345=

Env. CEECRINI EVENT SET_ANCHOR R13(06C009B8), 06C06180, 00000002 =000346=
Env. CEEZINV EVENT CEEEVNT-ID(ENCINIT) R13(06C06D80), 00000000, 06C0403C, 00000000, 06C041B4, 00000 =000347=
Env. CEECRINV EVENT CEEEVNT-ID(MAININV) R13(06C06D80), 87500020, 00000001, 00000000, 00140050, 87500 =000348=

EVENT CALL-TO-LE/370 Rununit_End_Invocation NAMETEST =000386=
EVENT RETURN-FROM-LE/370 Rununit_End_Invocation OK NAMETEST =000387=
EVENT CALL-TO-LE/370 Rununit_Termination NAMETEST =000388=
.Env. CEEZDSEX EVENT CEEEVNT-ID(ENCTERM) R13(06C06D80), 06C0403C, 00000000 =000389=
Env. CEECRTRM EVENT SET_ANCHOR R13(06C009B8), 00000000 =000390=
EVENT RETURN-FROM-LE/370 Rununit_Termination OK NAMETEST =000391=
EVENT CALL-TO-LE/370 Thread_Termination =000392=
Env. CEEZDSPR EVENT CEEEVNT-ID(PRCTERM) R13(06C00A80), 00000000 =000393=
EVENT RETURN-FROM-LE/370 Thread_Termination OK =000394=
EXIT START_PROGRAM/OK,NO,NAMETEST =000395=

Figure 114. CICS trace output in the ABBREV format.

260

The Domain Name field is replaced with a "Feature” short name (for example,
Lang.Env.) and module name (for example, CEE.....) which are coded into the
"Feature Trace” initialization (short name) and header formatting call (module
name). See the following macro example.

z/OS V1R5.0 Language Environment Debugging Guide

The FULL version includes the heading from the ABBREV version and then dumps
each captured block in Hex and Character formats. For example:

AP 1948 APLI EVENT CALL-TO-LE/370 - Rununit_Initialization Program_name (NAMETEST)

TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-868218FE TIME-05:58:55.2643333923 INTERVAL-00.0000020781 =000343=
1-0000 0000001E *ooa. *
2-0000 06878DEO 00140148 0005848C 0014014C 00045A4C 00140130 0014001C 067F3CE8 *.g.\...... dooa<iit<a, "Ly
0020 ©678FAD8 06878F37 867F3DDO *...Q.9..f".} *
3-0000 D5C1D4C5 E3C5E2E3 *NAMETEST *
4-0000 00000030 20000000 07500000 00001BOO 87500020 00000000 06CO3800 00000000 *......... Bovnnnn [T TR | *
0020 00140050 00000000 00000000 0678FABC *oo B *
FT Lang.Env. 1014 CEEZCREN EVENT - CEEEVNT-ID(PRCINIT) R13(06COOE10), PARMS(00000000)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-06F092A0 TIME-05:58:55.2643970329 INTERVAL-00.0000636406 =000344=
0000 0000C9C2 D4404040 40404040 40404040 40404040 40404040 40404040 40404040 *..IBM *
0020 D3819587 A4818785 40C595A5 89999695 948595A3 40404040 40404040 4040FOF0 xLanguage Environment 00%
0040 FOFOFOFO FOFOFOF1 C3C5C5C3 E3C6D4E3 D3819587 4BC595A5 4BOO0OOO *00000001CEECTFMTLang. Env. ... *
1-0000 06COOE10 00000011 00000000 LT P *
FT Lang.Env. 1013 CEEZCREN EVENT - CEEEVNT-ID(OPTP) R13(06COOE10), PARMS(06C049BO, 07500F28, 06C0403C, 06C010B4)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-06F0A23A TIME-05:58:55.2644148454 INTERVAL-00.0000178125 =000345=
0000 0000C9C2 D4404040 40404040 40404040 40404040 40404040 40404040 40404040 *..IBM *
0020 D3819587 A4818785 40C595A5 89999695 948595A3 40404040 40404040 4040FOF0 +Language Environment 00*
0040 FOFOFOFO FOFOFOF1 C3C5C5C3 E3C6DAE3 D3819587 4BC595A5 4B0O0O0O *00000001CEECTFMTLang.Env. ... *
1-0000 06COOE10 00000004 06C049BO 07500F28 06C0403C 06C010B4 oo {8 Lo *
FT Lang.Env. 1101 CEECRINI EVENT - SET_ANCHOR R13(06C009B8), PARMS(06C06180, 00000002)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-06F02F90 TIME-05:58:55.2644493767 INTERVAL-00.0000345312 =000346=
0000 0000C9C2 D4404040 40404040 40404040 40404040 40404040 40404040 40404040 *..IBM *
0020 D3819587 A4818785 40C595A5 89999695 948595A3 40404040 40404040 4040FOFO *Language Environment 00
0040 FOFOFOFO FOFOFOF1 C3C5C5C3 E3C6D4E3 D3819587 4BC595A5 4B0092B4 *00000001CEECTFMTLang.Env. .k. *
1-0000 ©6C009B8 06C06180 00000002 s/ *
FT Lang.Env. 1018 CEEZINV EVENT - CEEEVNT-ID(ENCINIT) R13(06C06D80), PARMS(00000000, 06C0403C, 00000000, 06C041B4, 00000000,
01000000, 00000000, HOEOOOO0)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-06FOCIB4 TIME-05:58:55.2644710798 INTERVAL-00.0000217031 =000347=
0000 ©00ACIC2 DA404040 40404040 40404040 40404040 40404040 40404040 40404040 *..IBM *
0020 D3819587 A4818785 40C595A5 89999695 948595A3 40404040 40404040 4040FOFO *Language Environment 00+
0040 FOFOFOFO FOFOFOF1 C3C5C5C3 E3C6D4E3 D3819587 4BC595A5 4B0072B4 *00000001CEECTFMTLang.Env. ... *
1-0000 06C06D8O 0000012 0OOAOA0O 06CO403C 00000000 06CO41B4 00000000 01000000 *.{{ ..coofieieiiin *
0020 00000000 00000000 Kivaianan *
2-0000 D8C3C5E2 C9000000 00OOO0OAO 00000000 DBC3C5E2 D6OOOOOO 00000000 00000000 *QCESI........... QCESO.....vnnn.. *
0020 D8C3C5E2 C5000000 00000000 00000000 *QCESE......ovtt *
FT Lang.Env. 1008 CEECRINV EVENT - CEEEVNT-ID(MAININV) R13(06C06D80), PARMS(87500020, 00000001, 00000000, 00140050, 87500020)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-06F038D2 TIME-05:58:55.2645123298 INTERVAL-00.0000412500 =000348=
0000 0000C9C2 D4404040 40404040 40404040 40404040 40404040 40404040 40404040 *..IBM *
0020 D3819587 A4818785 40C595A5 89999695 948595A3 40404040 40404040 4040FOF0 xLanguage Environment 00%
0040 FOFOFOFO FOFOFOF1 C3C5C5C3 E3C6D4E3 D3819587 4BC595A5 4BOO0OOO *00000001CEECTFMTLang. Env. ... *
1-0000 06C06D80 0OOAOOOE 87500020 00000001 00000000 00140050 87500020 *o{ oo o P &g& *
AP 1948 APLI EVENT CALL-TO-LE/370 - Rununit_End_Invocation Program_name (NAMETEST)
TASK-00036 KE_NUM-0026 TCB-006FA1DO RET-868218FE TIME-05:58:55.2670554079 INTERVAL-00.0000107187 =000386=
1-0000 00000021 *oaa. *
2-0000 06878DEC 00140148 0005848C 0014014C 00045A4C 00140130 0014001C 067F3CE8 *.g........ dooa<iit<ai, "Ly
0020 ©678FAD8 80140390 *o0.Qu... *
3-0000 D5C1D4C5 E3C5E2E3 *NAMETEST *
4-0000 40000000 00000000 D5C1D4C5 0000036C D3F3F2F1 00000005 00000000 00000000 * NAME...%L321............ *
0020 00000000 001402FC 00000000 00000000 00000000 0OOOO0O0 00000000 BOOOOOOO *......'e'erererererenenenenenens *

Figure 115. CICS trace output in the FULL format.

The first block is used for the feature trace information. It contains the name of the
off-line formatting module and the short name used in the formatted heading line.
The other 6 blocks are available for user data.

The SHORT version is a cross between the ABBREV and FULL versions.

For more information about the CICS trace, see |CICS Diagnosis Reference

Chapter 8. Debugging under CICS 261

Ensuring transaction rollback

If your application does not run to normal completion and there is no CICS
transaction abend, take steps to ensure that transaction rollback (the backing out of
any updates made by the malfunctioning application) takes place.

There are two ways to ensure that a transaction rollback occurs when an unhandled
condition of severity 2 or greater is detected:

* Use the ABTERMENC run-time option with the ABEND suboption
(ABTERMENC(ABEND))

» Use an assembler user exit that requests an abend for unhandled conditions of
severity 2 or greater

The IBM-supplied assembler user exit for CICS (CEECXITA), available in the
Language Environment SCEESAMP sample library, ensures that a transaction
abend and rollback occur for all unhandled conditions of severity 2 or greater. For
more information about the assembler user exit, see ['Invoking the assembler user|
fexit” on page 24|and|z/OS Language Environment Programming Guide,

Finding data when Language Environment returns a nonzero return
code

Language Environment does not write any messages to the CESE transient data
queue. Following is the output generated when Language Environment returns a
nonzero reason code to CICS and the location where the output appears:

Table 25. Finding Data When Language Environment Returns a Nonzero Return Code
Output Message Location Issued By

DFHAC2206 14:43:54 LEO3CCO1 User’s terminal CICS
Transaction UTV2 has failed with abend
AEC7. Resource backout was successful.

DFHAP12001 LEO3CCO1 A CICS request to System console CICS
the Language Environment has failed.
Reason code '0012030'.

DFHAC2236 06/05/91 14:43:48 LEO3CCO1 Transient data queue CSMT CICS
Transaction UTV2 abend AEC?7 in routine
UT2CVERI term P021 backout successful.

Finding data when Language Environment abends internally

Language Environment does not write any messages to the CESE transient data
queue. Following is the output generated when Language Environment abends
internally and the location where the output appears:

Table 26. Finding Data When Language Environment Abends Internally
Output Message Location Issued By

DFHAC?2206 14:35:24 LEO3CCO1 User’s terminal CICS
Transaction UTV8 has failed with abend
4095. Resource backout was successful.

CEE1000S LE INTERNAL abend. ABCODE System console Language
= 00000FFF REASON = 00001234 Environment

262 2/0S V1R5.0 Language Environment Debugging Guide

Table 26. Finding Data When Language Environment Abends Internally (continued)
Output Message Location Issued By

DFHAC2236 06/05/91 14:35:24 LEO3CCO1 Transient data queue CSMT CICS
Transaction UTV8 abend 4095 in routine
UT8CVERI term P021 backout successful.

Finding data when Language Environment Abends from an EXEC CICS

command

This section shows the output generated when an application abends from an
EXEC CICS command and the location where the output appears.

This error assumes the use of Language Environment run-time option
TERMTHDACT(MSG).

Table 27. Finding Data When Language Environment Abends from an EXEC CICS Command
Output Message Location Issued By

DFHAC2206 14:35:34 LEO3CCO1 User’s terminal CICSs
Transaction UTV8 has failed with abend AEI.
Resource backout was successful.

No message. System console CICS

DFHAC2236 06/05/91 14:35:17 LEO3CCO01 Transient data queue CSMT CICS
Transaction UTV9 abend AEIO in routine
UT9CVERI term P021 backout successful.

P021UTV9 091156 143516 CEE3250C The Transient data queue CESE Language
System or User Abend AEIO was issued. Environment

Displaying and modifying run-time options with the CLER transaction

The CLER transaction can be used to:

» Display the current run-time options in effect for the region.

» Modify the following subset of the region run-time options:
— TRAP(ONIOFF)

— TERMTHDACT(QUIETIMSGITRACEIDUMPIUAONLY|UATRACEI
UADUMPIUAIMM)

— RPTOPTS(ONIOFF)
— RPTSTG(ONIOFF)
— ALL31(ONIOFF)
— CBLPSHPOP(ONIOFF)
» Write the current region run-time options to the CESE queue for printing.

The CLER transaction is conversational; it presents the user with commands for the
terminal display. The run-time options that can be modified with this transaction are
only in effect for the duration of the running region.

The CLER transaction must be defined in the CICS CSD (CICS System Definition

file). The following definitions are required, and are in the Language Environment
CEECCSD job in the SCEESAMP data set:

Chapter 8. Debugging under CICS 263

DEFINE PROGRAM(CEL4RTO) GROUP(CEE) LANGUAGE (ASSEMBLER) EXECKEY (CICS)
DEFINE MAPSET(CELCLEM) GROUP(CEE)

DEFINE MAPSET(CELCLRH) GROUP(CEE)

DEFINE TRANS(CLER) PROG(CEL4RTO) GROUP(CEE)

Use the CEECCSD job to activate these definitions, or you must define them
dynamically with the CICS CEDA transaction.

Note: If the run-time option ALL31 is modified to OFF, the stack is forced to
BELOW. A warning message, asking if want to continue, is presented on the
panel. Once the stack is modified to BELOW, it will remain below for the
duration of the region, even if you set ALL31 back to ON.

To send the run-time option report to the CESE queue for output display or printing,
press PF10 on the panel which displays the run-time option report.

For detailed information on the use of CLER, select PF1 from the main menu that is
displayed when the CLER transaction is invoked.

264 2/0S V1R5.0 Language Environment Debugging Guide

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2004 265

266 2/0S V1R5.0 Language Environment Debugging Guide

Appendix A. Diagnosing Problems with Language
Environment

This appendix provides information for diagnosing problems in the Language
Environment product. It helps you determine if a correction for a product failure
similar to yours has been previously documented. If the problem has not been
previously reported, it tells you how to open a Problem Management Record (PMR)
to report the problem to IBM, and if the problem is with an IBM product, what
documentation you need for an Authorized Program Analysis Report (APAR).

Diagnosis Checklist

Step through each of the items in the diagnosis checklist below to see if they apply
to your problem. The checklist is designed to either solve your problem or help you
gather the diagnostic information required for determining the source of the error. It
can also help you confirm that the suspected failure is not a user error; that is, it
was not caused by incorrect usage of the Language Environment product or by an
error in the logic of the routine.

1. If your failing application contains programs that were changed since they last
ran successfully, review the output of the compile or assembly (listings) for any
unresolved errors.

2. If there have not been any changes in your applications, check the output (job
or console logs, CICS transient (CESE) queues) for any messages from the
failing run.

3. Check the message prefix to identify the system or subsystem that issued the
message. This can help you determine the cause of the problem. Following
are some of the prefixes and their respective origins.

EDC The prefix for C/C++ messages. The following series of messages are
from the C/C++ run-time component of Language Environment: 5000
(except for 5500, which are from the DSECT uitility), 6000, and 7000.

1GZ The prefix for messages from the COBOL run-time component of
Language Environment.

FOR The prefix for messages from the Fortran run-time component of
Language Environment.

IBM The prefix for messages from the PL/I run-time component of
Language Environment.

CEE The prefix for messages from the common run-time component of
Language Environment.

4. For any messages received, check for recommendations in the “Programmer
Response” sections of the messages in this manual.

5. Verify that abends are caused by product failures and not by program errors.
See the appropriate chapters in this manual for a list of Language
Environment-related abend codes.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for
the problem. Verify that you have received all issued PTFs and have installed
them, so that your installation is at the most current maintenance level.

7. The preventive service planning (PSP) bucket, an online database available to
IBM customers through IBM service channels, gives information about product
installation problems and other problems. Check to see whether it contains
information related to your problem.

© Copyright IBM Corp. 1991, 2004 267

10.

1.

12.

Narrow the source of the error.

» If a Language Environment dump is available, locate the traceback in the
Language Environment dump for the source of the problem.

» For XPLINK and non-XPLINK applications, IBM recommends that you use
the IPCS verbexit LEDATA with the CEEDUMP option to format the
traceback. Check the traceback for the source of the problem. For
information on how to generate and use a Language Environment or system
dump to isolate the cause of the error, sedChapter 3, “Using Language|
|Environment debugging facilities,” on page 37|

» Alternatively, in a z/VM or a non-XPLINK environment, you can follow the
save area chain to find out the name of the failing module and whether IBM
owns it. For information on finding the routine name, see f‘Locating the|
[Name of the Failing Routine for a Non-XPLINK Application.’]

After you identify the failure, consider writing a small test case that re-creates
the problem. The test case could help you determine whether the error is in a
user routine or in the Language Environment product. Do not make the test
case larger than 75 lines of code. The test case is not required, but it could
expedite the process of finding the problem.

If the error is not a Language Environment failure, refer to the diagnosis
procedures for the product that failed.

Record the conditions and options in effect at the time the problem occurred.
Compile your program with the appropriate options to obtain an assembler
listing and data map. If possible, obtain the binder or linkage editor output
listing if running on MVS or the LOAD/GENMOD map if running on z/VM. Note
any changes from the previous successful compilation or run. For an
explanation of compiler options, refer to the compiler-specific programming
guide.

If you are experiencing a no-response problem, try to force a dump. under
z/VM in the CP mode, enter the DUMP command. Under other systems,
CANCEL the program with the dump option.

Record the sequence of events that led to the error condition and any related
programs or files. It is also helpful to record the service level of the compiler
associated with the failing program.

Locating the Name of the Failing Routine for a Non-XPLINK

Application

If a system dump is taken, follow the save area chain to find out the name of the

1.

failing routine and whether IBM owns it. Following are the procedures for locating
the name of the failing routine, which is the primary entry point name.

Find the entry point associated with the current save area. The entry point
address (EPA), located in the previous save area at displacement X'10', decimal
16, points to it.

2. Determine the entry point type, of which there are four:

Entry point type is... If...

Language Environment The entry point plus 4 is X'00C3C5C5'".

conforming

Language Environment The entry point plus 4 is X'01C3C5C5'. OPLINK linkage
conforming OPLINK conventions are used.

C/C++ The entry point plus 5 is X'CE".

268 2/0S V1R5.0 Language Environment Debugging Guide

Entry point type is... If...

Nonconforming The entry point is none of the above. Nonconforming entry
points are for routines that follow the linking convention in
which the name is at the beginning of the routine.
X'47F0Fxxx' is the instruction to branch around the routine
name.

For routines with Language Environment-conforming and C/C++ entry points,
Language Environment provides program prolog areas (PPAs). PPA1 contains
the entry point name and the address of the PPA2; PPA2 contains pointers to
the timestamp, where release level keyword information is found, and to the
PPA1 associated with the primary entry point of the routine.

If the entry point type of the failing routine is Language Environment-conforming,
go to step

If the entry point type is C/C++, go to stepE on page 27Zl

If the entry point type is nonconforming, go to step |6 on page 27§l

3. If the entry point type is Language Environment-conforming, find the entry point
name for the Language Environment or COBOL program.

a. Use an offset of X'C' from the entry point to locate the address of the PPA1.

b. In the PPA1, locate the offset to the length of the name. If OPLINK, then
multiply the offset by 2 to locate the actual offset to the length of the name.

c. Add this offset to the PPA1 address to find the halfword containing the
length of the name, followed by the entry point name.

The entry point name appears in EBCDIC, with the translated version in the
right-hand margin of the system dump.

4. Find the Language Environment or COBOL program name.
a. Find the address of the PPA2 at X'04' from the start of the PPA1.

b. Find the address of the compilation unit’'s primary entry point at X'10' in the
PPA2.

c. Find the entry point name associated with the primary entry point as
described above. The primary entry point name is the routine name.

[Figure 116 on page 270|illustrates the non-XPLINK Language
Environment-conforming PPA1 and PPA2.

Appendix A. Diagnosing Problems with Language Environment 269

PPA1: Entry Point Block

Offset to the X'CE' Lan Env Member
X'00' length of name | (Lang Env Signature) flags flags
X'04' Address of PPA2
X'08' Signed offset to BDI from the entry point of zero
X'oC' Reserved
X'10' Reserved
X'14' Reserved
X'18' Reserved
X'1C' Language Environment flags (16 bits)
Length of name Untruncated entry/label name

PPA2: Compile Unit Block

Member Member Member Control Level
X'00' identifier Subid Defined =1
X'o4' V(CEESTART) for load module
X'08' Offset from PPA2 to CDI, zero if no compile unit debug info
X'0C' Offset from PPA2 to timestamp/version information, or zero
X'10' A(PEP) - address of the compilation unit's Primary Entry Point

Figure 116. Language Environment Non-XPLINK PPA1 and PPA2

|Figure 117 on page 271| illustrates the XPLINK Language Environment-
conforming PPA1, followed by the XPLINK PPA1 optional area fields.

270 2/0S V1R5.0 Language Environment Debugging Guide

+00

+04

+08

+0C

+10

00

PPA1: XPLINK Entry Point Block Fixed Area (Version 3)

Version LE Signature X‘CE’ Saved GPR Mask
(Lan Env Signature)
Signed Offset to PPA2 from start of PPA1
PPA1 Flags 1 PPA1 Flags 2 PPA1 Flags 3 PPA1 Flags 4
Length/4 of Parms Length/2 of Prolog | Alloca Reg| Offs/2 R4
Chg
Length of Code
Figure 117. Language Environment PPA1 for XPLINK
Figure 118]illustrates the non-XPLINK Language Environment PPA2.
PPA2: Compile Unit Block

Member Member Member Control Level
Identifier Subid Defined (=1)

04
08
oc

10

V(CEESTART) for load module

Offset from PPA2 to Compile Debugging Information (CDI) or zero

Offset from PPA2 to timestamp/version information or zero

A(PEP) - address to the compilation unit's Primary Entry Point

Figure 118. PPA2: Compile Unit Block (Non-XPLINK)

[Figure 119 on page 272} illustrates the Language Environment PPA2: Compile

Unit Block for XPLINK, and [Figure 120 on page 272|illustrates the PPA2

timestamp and version information.

Appendix A. Diagnosing Problems with Language Environment 271

PPA2: Compile Unit Block

o0 Member Identifier Member Subid Member Defined Control Level (= 4)
+04 Signed offset from PPA2 to CEESTART for load module

+08 Signed offset from PPA2 to CDI or zero if no compile unit debug info

+0C Signed offset from PPA2 to timestamp/version information or zero

10 Signed offset from PPA2 to the compilation unit’s Primary Entry Point

14 Compilation flags Reserved (must be zero)

Figure 119. PPA2 Compile Unit Block for XPLINK

00 CL4'yyyy' Year of compilation

04 CL4'mmdd' Date of compilation

08 CL4'hhmm' Time of compilation

oC CL2'ss' Time of compilation CL2'v' Version

10 CL4'rrmm' Release/Modification

14 Service level string length Untruncated service level string

Figure 120. PPA2 Timestamp and Version Information for XPLINK

5. If the entry point type is C/C++, find the C/C++ routine name.

a. Use the entry point plus 4 to locate the offset to the entry point name in the
PPA1.

b. Use this offset to find the length-of-name byte followed by the routine name.

The routine name appears in EBCDIC, with the translated version in the
right-hand margin.
[Figure 121 on page 273|illustrates the C PPA1.

272 2/0S V1R5.0 Language Environment Debugging Guide

C Routine Layout Entry and PPA1

00 | B xxx(0,15)

Branch around prolog data

04 | X'14' Offset to
the name

X'CE'

(Language Environment

signature)

Language Environment Member flags

Flags

08 A(PPA2)
oC A (Block Debugging Information (BDI)) or zero

10 Stack frame size

yy

Length of name

Untruncated entry/label name

Figure 121. C PPA1

6. If the entry point type is nonconforming, find the PL/I routine name.

a. Find the one byte length immediately preceding the entry point. This is the
length of the routine name.

b. Go back the number of bytes specified in the name length. This is the
beginning of the routine name.

7. If the entry point type is nonconforming, find the name of the routine other than

PL/I.

a. Use the entry point plus 4 as the location of the entry point name.

b. Use the next byte as the length of the name. The name directly follows the
length of name byte. The entry point name appears in EBCDIC with the
translated version in the right-hand margin.

Figure 122|illustrates a nonconforming entry point type.

Nonconforming entry points that can appear do not necessarily follow this
linking convention. The location of data in these save areas can be
unpredictable.

020000
020010
020020
020030
020040
020050
020060

47FOFO0C
18CF41B0O
4510C052
C200001E
40D6C640
D3D30ACA
D9C44040

06D3CI9E2
€29850BD
E3E8D7D3
C5D5E3C5
DIC5C3D6
00020058
010202F0

E3C9E300
000850DB
C9D54040
D940D5E4
DIC4E240
4510C06C
E4000000

90ECDOOC EOB
000418DB
01020034
D4C2C5D9
D6D940C1
E6C1CIE3
OACA0002

.00..LISTIT.....

..Bg&...&.....

.. TYPLIN

.ENTER NUMBER

OF RECORDS OR A

Figure 122. Nonconforming Entry Point Type with Sample Dump

Searching the IBM Software Support Database

Failures in the Language Environment product can be described through the use of
keywords. A keyword is a descriptive word or abbreviation assigned to describe one
aspect of a product failure. A set of keywords, called a keyword string, describes

the failure in detail. You can use a keyword or keyword string as a search argument
against an IBM software support database, such as the Service Information Search

Appendix A. Diagnosing Problems with Language Environment 273

(SIS). The database contains keyword and text information describing all current
problems reported through APARs and associated PTFs. IBM Support Center
personnel have access to the software support database and are responsible for
storing and retrieving the information. Using keywords or a keyword string, they will
search the database to retrieve records that describe similar known problems.

If you have IBMLink™ or some other connection to the IBM databases, you can do
your own search for previously recorded product failures before calling the IBM
Support Center.

If your keyword or keyword string matches an entry in the software support
database, the search may yield a more complete description of the problem and
possibly identify a correction or circumvention. Such a search may yield several
matches to previously reported problems. Review each error description carefully to
determine if the problem description in the database matches the failure.

If a match is not found, go to ['Preparing Documentation for an Authorized Program|
[Analysis Report (APAR).”|

Preparing Documentation for an Authorized Program Analysis Report
(APAR)

Prepare documentation for an APAR only after you have done the following:

» Eliminated user errors as a possible cause of the problem.

* Followed the diagnostic procedures.

* You or your local IBM Support Center has been unsuccessful with the keyword
search.

Having met these criteria, follow the instructions below.
1. Report the problem to IBM.

If you have not already done so, report the problem to IBM by opening a
Program Management Record (PMR).

If you have IBMLink or some other connection to IBM databases, you can open

a PMR yourself. Or, the IBM Software Support Center can open the PMR after

consulting with you on the phone. The PMR is used to document your problem

and to record the work that the Support Center does on the problem. Be

prepared to supply the following information:

» Customer number

* PMR number

* Operating system

e Operating system release level

* Your current Language Environment maintenance level (PTF list and list of
APAR fixes applied)

» Keyword strings you used to search the IBM software support database

* Processor number (model and serial)

» A description of how reproducible the error is. Can it be reproduced each
time? Can it be reproduced only sometimes? Have you been unable to
reproduce it? Supply source files, test cases, macros, subroutines, and input
files required to re-create the problem. Test cases are not required, but can
often speed the response time for your problem.

274 2/0S V1R5.0 Language Environment Debugging Guide

If the IBM Support Center concludes that the problem described in the PMR is a
problem with the Language Environment product, they will work with you to
open an APAR, so the problem can be fixed.

2. Provide APAR documentation. When you submit an APAR, you will need to

supply information that describes the failure. [Table 28| describes how to produce
documentation required for submission with the APAR.

Table 28. Problem Resolution Documentation Requirements

Item Materials Required How to Obtain Materials
1 Machine-readable source program, IBM-supplied system utility program
including macros, subroutines, input
files, and any other data that might
help to reproduce the problem.
2 Compiler listings: Use appropriate compiler options
Source listing
Object listing
Storage map
Traceback
Cross-reference listing
JCL listing and linkage editor
listing
Assembler-language expansion
3 Dumps See instructions in|Chapter 3, “Using|
Language Environment dump Language Environment debugging facilities,”]
System dump on page 37] (as directed by IBM support
personnel).
4 Partition/region size/virtual storage
size
List of applied PTFs System programmer
Operating instructions or console log Application programmer
JCL statements used to invoke and Application programmer
run the routine, including all run-time
options, in machine-readable form
8 System output associated with the Specify MSGFILE(SYSOUT)
MSGFILE run-time option.
9 Contents of the applicable catalog
10 A hardcopy log of the events leading Print out each display.

up to the failure.

3. Submit the APAR documentation.

When submitting material for an APAR to IBM, carefully pack and clearly identify
any media containing source programs, job stream data, interactive environment
information, data sets, or libraries.
All magnetic media submitted must have the following information attached and
visible:
* The APAR number assigned by IBM.
* Alist of data sets on the tape (such as source program, JCL, data).
* A description of how the tape was made, including:

— The exact JCL listing or the list of commands used to produce the

machine-readable source. Include the block size, LRECL, and format of

each file. If the file was unloaded from a partitioned data set, include the
block size, LRECL, and number of directory blocks in the original data set.

275

Appendix A. Diagnosing Problems with Language Environment

Labeling information used for the volume and its data sets.
The recording mode and density.

The name of the utility program that created each data set.
The record format and block size used for each data set.
Any printed materials must show the corresponding APAR number.

The IBM service personnel will inform you of the mailing address of the service
center nearest you.

If an electronic link with IBM Service is available, use this link to send diagnostic
information to IBM Service.

After the APAR is opened and the fix is produced, the description of the problem
and the fix will be in the software support database in SIS, accessible through
ServicelLink.

276 2/0S V1R5.0 Language Environment Debugging Guide

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

» Use assistive technologies such as screen readers and screen magnifier
software

» Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to|z/OS TSO/E|
|Primer} |z/0S TSO/E User’'s Guide, and |z/0OS ISPF User’s Guide Volume [for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/0S Information

z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
One exception is command syntax that is published in railroad track format;

screen-readable copies of z/OS books with that syntax information are separately
available in HTML zipfile form upon request to mhvrcfs @ us.ibm.com.

© Copyright IBM Corp. 1991, 2004 277

278 2/0S V1R5.0 Language Environment Debugging Guide

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1991, 2004 279

280

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

z/OS V1R5.0 Language Environment Debugging Guide

Programming Interface Information

This publication documents information NOT intended to be used as a
Programming Interface of Language Environment in z/OS.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle IBMLink SAA

AFP IMS SXM
C/370 IMS/ESA System/370
CICS Language Environment TCS
COBOL/370 MVS VisualAge
DB2 MVS/ESA z/OS
DFSMS/MVS Open Class z/OS.e
DFSORT 0S/390 zSeries
IBM Resource Link

IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in
the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 281

282 2/0S V1R5.0 Language Environment Debugging Guide

Bibliography

This section lists the books in the Language Environment library and other
publications that may be helpful when using Language Environment.

Language Products Publications

z/0S Language Environment

« |z/0S Language Environment Concepts Guidel, SA22-7567

« |z/0S Language Environment Programming Guide] SA22-7561

« |z/0S Language Environment Programming Reference, SA22-7562

« |2/0S Language Environment Customizatior}, SA22-7564

» [z/0S Language Environment Debuqging Guide, GA22-7560

« [z/0S Language Environment Run-Time Application Migration Guidd, GA22-7565
« |z/0S Language Environment Writing Interlanguage Communication Applications,
SA22-7563

* |z/0S Language Environment Run-Time Messagesi, SA22-7566

« |2/0S Language Environment Vendor Interfaces| SA22-7568

z/0S C/C++

« |z/0S C/C++ Language Reference| SC09-4815

* |Z/0S C/C++ Compiler and Run-Time Migration Guide|, GCO09-4913
* [220S C/C++ Programming Guide} SC09-4765

» [z/0S C/C++ User’s Guidd, SC09-4767

+ |z/0S C/C++ Run-Time Library Reference] SA22-7821

+ [0S C/C++ Messages, GC09-4819

« |Standard C++ Library Reference, SC09-4949|

+ |C/C++ Legacy Class Libraries Reference, SC09-7652]

« |IBM Open Class Library Transition Guide, SC09-4948|

Enterprise COBOL for z/0S and 0S/390

* |Enterprise COBOL for z/OS and 0S/390 Licensed Program Specifications,
GC27-1411

« |Enterprise COBOL for z/OS and 0S/390 Customization, GC27-1410

« |Enterprise COBOL for z/OS and 0S/390 Language Reference, SC27-1408

« |Enterprise COBOL for z/OS and OS/390 Programming Guidd, SC27-1412

« |Enterprise COBOL for z/OS and 0S/390 Migration Guide] GC27-1409

COBOL for 0OS/390 & VM

* COBOL for 05/390 & VM Licensed Program Specifications, GC26-9044

« [COBOL for 05/390 & VM Customization under 0S/390, GC26-9045

« [COBOL for 05/390 & VM Language Reference, SC26-9046

« |COBOL for 0S/390 & VM Programming Guidg, SC26-9049

« [COBOL for 05/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

COBOL for MVS & VM (Release 2)

» Licensed Program Specifications, GC26-4761

* Programming Guide, SC26-4767

* Language Reference, SC26-4769

» Compiler and Run-Time Migration Guide, GC26-4764
* Installation and Customization under MVS, SC26-4766
* Reference Summary, SX26-3788

» Diagnosis Guide, SC26-3138

VS COBOL Il

© Copyright IBM Corp. 1991, 2004 283

VS COBOL Il Application Programming Guide for MVS and CMS, SC26-4045

Debug Tool
* Debug Tool documentation is available at:
http://www.ibm.com/software/ad/debugtool/Tibrary/

VS FORTRAN Version 2

* Language Environment Fortran Run-Time Migration Guide, SC26-8499
» Language and Library Reference, SC26-4221

* Programming Guide for CMS and MVS, SC26-4222

Enterprise PL/I for z/0S and 0S/390, V3R1

« |Enterprise PL/I for z/OS and 0S/390 Licensed Program Specifications,
GC27-1456

« |Enterprise PL/I for z/OS and 0S/390 Programming Guidd, SC27-1457

* |Enterprise PL/I for z/ZOS and OS/390 Language Referencei, SC27-1460

« |Enterprise PL/I for z/0OS and OS/390 Migration Guide] GC27-1458

« |Enterprise PL/I for z/OS and 0S/390 Messages and Codes, SC27-1461

« |Enterprise PL/I for z/ZOS and OS/390 Diagnosis Guidd, SC27-1459

VisualAge PL/I

« |VisualAge PL/I for 0S/390 Licensed Program Specifications, GC26-9471
« |VisualAge PL/I for 0S/390 Programming Guidd, SC26-9473

« |VisualAge PL/I Language Reference, SC26-9476

« |VisualAge PL/I for 0S/390 Compiler and Run-Time Migration Guide, SC26-9474
« |VisualAge PL/I Messages and Codes, SC26-9478

« |VisualAge PL/I for 0S/390 Diagnosis Guidd, SC26-9475

PL/I for MVS & VM

* PL/I for MVS & VM Licensed Program Specifications, GC26-3116

* PL/I for MVS & VM Programming Guide, SC26-3113

* PL/I for MVS & VM Language Reference, SC26-3114

* PL/I for MVS & VM Reference Summary, SX26-3821

« |PL/I for MVS & VM Compiler and Run-Time Migration Guide} SC26-3118
e PL/I for MVS & VM Installation and Customization under MVS, SC26-3119
* PL/I for MVS & VM Compile-Time Messages and Codes, SC26-3229

* PL/I for MVS & VM Diagnosis Guide, SC26-3149

High Level Assembler for MVS & VM & VSE
* Programmer’s Guide, MVS & VM Edition, SC26-4941

Related Publications

284

cics

« |CICS Transaction Server for z/OS Installation Guidd, GC34-5985
« [CICS Operations and Utilities Guide] SC34-5991

« [CICS Problem Determination Guide, GC34-6002

« [CICS Resource Definition Guidd, SC34-5990

e CICS Data Areas, LY33-6100

« |CICS Application Programming Guide, SC34-5993

» [CICS Application Programming Referencel, SC34-5994

« [CICS System Definition Guide| SC34-5988

DB2
Database 2 Application Programming and SQL Guide, SC26-4377

z/OS V1R5.0 Language Environment Debugging Guide

DFSMS/MVS
z/0OS DFSMS Program Management, SC27-1130
2z/0S DFSMS DFM Guide and Reference} SC26-7395

IPCS

+ |2/0S MVS IPCS User’s Guidd, SA22-7596
» [z/0S MVS IPCS Commands, SA22-7594

» |z/0S MVS IPCS Customizatior}, SA22-7595

DFSORT
[z/0S DFSORT Application Programming Guidg, SC26-7523

IMS/ESA

IMS/ESA Application Programming: Design Guidd, SC26-8728

IMS/ESA Application Programming: Database Manager, SC26-8727

IMS/ESA Application Programming: Transaction Managef, SC26-8729
IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

msys for Setup
+ |z/0S Managed System Infrastructure for Setup User’s Guide, SC33-7985

z/0S
+ [2/0S Introduction and Release Guide] GA22-7502

+ |z/0S Program Directory, GI10-0670

+ |z/0S and z/0S.e Planning for Installationi, GA22-7504
+ |z/0OS Information Roadmap, SA22-7500

+ |z/0OS Hot Topics Newslette, GA22-7501

+ |z/0S Licensed Program Specifications, GA22-7503

* |z/0OS ISPF Dialog Tag Language Guide and Referencd, SC34-4824
* |z/0S ISPF Planning and Customizing, GC34-4814
* |z/0OS ISPF Dialog Developer’s Guide and Reference| SC34-4821

« [z/0S UNIX System Services User’s Guidd, SA22-7801

* |z/0S UNIX System Services Command Reference, SA22-7802

* |z/0S UNIX System Services Programming: Assembler Callable Services|
Referencd, SA22-7803

« |2/0S UNIX System Services Planning, GA22-7800

* [2/0S TSO/E Customizatior], SA22-7783
* |2/0S TSO/E Programming Serviced, SA22-7789
* |z/0S TSO/E System Programming Command Reference, SA22-7793

z/0S.e
« [2/0S.e Overview| GA22-7869
« |z/08S.e Licensed Program Specifications, GA22-7868

Softcopy Publications
z/OS Collection, SK3T-4269

Bibliography 285

286 2/0S V1R5.0 Language Environment Debugging Guide

Index

Special characters
__abend 128

__alloc 128

__amrc 128

__code 128

__error 128

_ feedback 128

__last_op 128

__msg 129

_BPXK_MDUMP 79

A

abend codes
>= 4000 32
<4000 32
passing to operating system 24
system, example of 34
user-specified, example of 34
user, example of 34
using 34
abends
internal, table of output 262, 263
Language Environment 34, 259
requested by assembler user exit 24
system 34
under CICS 259
user 34
ABPERC run-time option
function 9
generating a system dump and 77
modifying condition handling behavior and 22
ABTERMENC run-time option 9, 25
using 25
accessibility 277
AGGREGATE compiler option 4, 8
anywhere heap
statistics 20
APAR (Authorized Program Analysis Report) 274
documentation 275
application programs
debugging
handling a core dump written to a BFS file 183
handling a core dump written to an HFS file 183
argument
in dump 62
arguments, registers, and variables for active
routines 60
assembler language
user exit 24, 25
for CICS 262
generating a system dump with 77
modifying condition handling behavior and 25
using 24, 25
atexit
information in dump 157
Authorized Program Analysis Report (APAR) 274

© Copyright IBM Corp. 1991, 2004

automatic variables
locating in dump 244

B

base locator
for working storage 198
indump 198
below heap
statistics 20
BLOCKS option of CEE3DMP callable service 39

C

C return codes to CICS 259
C-CAA (C-specific common anchor area)
See C/C++, C-specific common anchor area (C-CAA)
C/C++
__amrc
example of structure 128
information in dump 159
__msg 129
atexit
information in dump 157
C-specific common anchor area (C-CAA) 157
cdump() function 145
compiler listings 135
IPA link step listing 137
compiler options 3
debugging examples 172, 179
dump
fetch information in 157
parameter in 141
signal information in 156
structure variables, locating in 143
system, structures in 143
file
control block information 158
status and attributes in dump 158
functions
calling dump, example 145
cdump() 45, 145
csnap() 45, 145, 146
ctrace() 45, 145, 146
fetch() 127
fopen() 129
perror() 127
printf() 128
to produce dump output 45
memory file control block 158
perror() function 133
stdio.h 128
timestamp 145
CAA (common anchor area) 64
call chain 62
CALL statement
CDUMP/CPDUMP 217

287

CALL statement (continued)
DUMP/PDUMP 216
SDUMP 218
callable services 21
CEE3ABD—terminate enclave with an abend
See CEE3ABD—terminate enclave with an abend
CEE3DMP—generate dump
See CEE3DMP—generate dump
CEE3GRO—returns location offset
See CEE3GRO—returns location offset
CEE3SRP—set resume point
See CEE3SRP—set resume point
CEEDCOD—decompose a condition token
See CEEDCOD—decompose a condition token
CEEHDLR—register user condition handler
See CEEHDLR—register user condition handler
CEEMGET—get a message
See CEEMGET—get a message
CEEMOUT—dispatch a message
See CEEMOUT—dispatch a message
CEEMRCE—move resume cursor to a designated
label
See CEEMRCE—move resume cursor to
designated label
CEEMRCR—move resume cursor relative to handle
cursor
See CEEMRCR—move resume cursor relative to
handle cursor
CEEMSG—get, format, and dispatch a message
See CEEMSG—qget, format, and dispatch a
message
CEESGL—signal a condition
See CEESGL—signal a condition
case 1 condition token 27
case 2 condition token 27
cdump() 145
CEE prefix 31, 33
CEE3ABD—terminate enclave with an abend 21, 34,
77
generating a dump and 77
handling user abends and 21, 34
modifying condition handling behavior and 21
CEE3DMP—generate dump 37, 62
See also Language Environment dump
generating a Language Environment dump with 37
options 38
relationship to PLIDUMP 239
syntax 38
CEE3GRO—returns location offset 22
CEE3SRP—set resume point 22
CEEBXITA assembler user exit 24
CEECXITA assembler user exit 262
CEEDCOD—decompose a condition token 27
CEEDUMP — Language Environment Dump Service
See also Language Environment dump
control blocks 97
locating 117
CEEHDLR—register user condition handler 23
CEEMGET—get a message 27
CEEMOUT—dispatch a message 25

288 2/0S V1R5.0 Language Environment Debugging Guide

CEEMRCE—move resume cursor to designated
label 21
CEEMRCR—move resume cursor relative to handle
cursor 21
CEEMSG—get, format, and dispatch a message 27
CEESGL—signal a condition 27
CEESTART 127
character
data dump 217
CHECK run-time option
function 9
modifying condition handling behavior and 22
CHECKOUT compiler option 4
CICS
abends 259
application, from an EXEC CICS command 263
debugging for 257
debugging information, table of locations 257
destination control table (DCT) 257
example traceback in CESE transient data
queue 257
examples of output 257
nonzero reason code returned, table of output 262
reason codes 259
register and program status word contents 259
return codes
Language Environment 259
run-time messages 257
transaction
dump 258
rollback 262
class test 190
classifying errors table 31
CLLE (COBOL load list entry) 198
COBCOM control block 201
COBOL
base locator for working storage 198
compiler options 6
debugging examples 201, 213
dump
external data in 198
file information in 198
linkage section in 198
local variables in 195
routine information in 195
run unit storage in 199
stack frames for active routines in 195
working storage in 198
errors 189
listings 193
memory file control block 157
program class storage 198
return codes to CICS 259
routine
calling Language Environment dump service 193
COBVEC control block 201
command
syntax diagrams xvii
COMMAREA (Communication Area) 258
compiler options
Cc 3

compiler options (continued)
COBOL 6
Fortran 7
PL/l 7
Compiler options map 136
condition
information
for active routines 60
in dump 60
POSIX 27
unhandled 28
condition handling
behavior, modifying 21
user-written condition handler 21, 23
condition information block 62, 71
condition manager 28

CONDITION option of CEE3DMP callable service 40,

62

condition token 27
case 1 27
case 2 27

example of 28
conditions, nested 28
control block

for active routines 60
core dump

written to an HFS file 183
Cross-Reference listing 136
csnap() 146
ctrace() 146

D

data
map listing 193
values 62
DCB (data control block) 198
DCT (destination control table) 257
DEBUG run-time option 9
debugging
C, examples 172, 179
COBOL, examples 201, 213
for CICS 257
Fortran, examples 223, 229
PL/I, examples 247, 252
tool 37
DEPTHCONDLMT run-time option
function 9
modifying condition handling behavior and 22
wait/loop error and 32
diagnosis checklist 267
disability 277
DISPLAY statement 26, 189
documents, licensed xix
DSA (dynamic save area) 62
See stack, frame
dummy DSA 62
dump
an area of storage 217
core
written to an HFS file 183

dump (continued)
date in 58
dynamically allocated storage in 61
symbolic 218

DUMP suboption of TERMTHDACT run-time option 41

DUMP/PDUMP routine 216
format specifications 216
output 216
usage considerations 216

E

ECB (enclave control block) 61
EDB (enclave data block) 61
EDC prefix 31, 33
EIB (exec interface block) 258
enclave
identifier in dump 58
member list 61, 62
storage 61
termination
behavior, establishing 25
entry information 58
ENTRY option of CEE3DMP callable service 40
entry point
name of active routines in dump 59
ERRCOUNT run-time option
function 9
modifying condition handling behavior and 22
wait/loop error and 32
errno 157
error
determining source of 267

message while Language Environment was handling

another error 28
unanticipated 31
ESD compiler option 8
examples
application abends from 263
C routines 172, 179
calling a nonexistent subroutine 176, 204, 250
COBOL routines 201, 213
divide-by-zero error 172, 207, 252
output under CICS 257
PL/I routines 247, 252
SUBSCRIPTANGE error 201, 247
EXEC CICS DUMP statements 258
external data
for COBOL programs in dump 198
External symbol cross reference listing 136

F

fetch
fetch information in dump 157
fetch() 127
fetchable module 127
file
for COBOL, in dump 198
status key 189
file control block (FCB) 158

Index

289

FILES option of CEE3DMP callable service 39
FLAG compiler option 4
floating point registers
indump 58
fopen() 129
FOR prefix 31, 33
Fortran
compiler options 7
debugging examples 223, 229
dump services 215
errors, determining the source of 213
listings 215

G

general purpose registers 58
Global symbols map 136
GMAREA 198

GONUMBER compiler option 4

H

HANDLE ABEND EXEC CICS command 257
header files, C
ctest.h 145
errno.h 172
stdio.h 128
stdlib.h 172
heap storage
created by CEECRHP callable service 21
in LEDATA Output 98
reports 102
storage in dump 61
user 18
HEAPCHK run-time option
function 9, 103
HEAPPOOL Storage
statistics 185
user-created, _uheapreport 186

I/0
conventions 127
IBM prefix 31, 33
IGZ prefix 31, 33
in dump 58
INFOMSGFILTER run-time option
function 9
INITIALIZE statement 190
inline
report 136
Inline report for IPA 136
instruction length counter in dump 60
interactive problem control system (IPCS)
analyzing a core dump 183
INTERRUPT compiler option
function 8
INTERRUPT run-time option 9
interruption code in dump 60
ITBLK in dump 201

290 2z/0S V1R5.0 Language Environment Debugging Guide

K

keyboard 277

L

language constructs 189
Language Environment (Language Environment/370)
return codes to CICS 259
symbolic feedback code 27
Language Environment dump
C information in 156
CEEDUMP 37
COBOL information in 197
default options 40
example traceback in 62
Fortran information in 221
multiple enclaves and 76
options
BLOCKS 39
CONDITION 40, 62
ENCLAVE 38
ENTRY 40
FILES 39
FNAME 40
NOBLOCKS 39
NOCONDITION 40
NOENTRY 40
NOFILES 39
NOSTORAGE 39
NOTRACEBACK 39
NOVARIABLES 39
PAGESIZE(n) 40
STACKFRAME 39
STORAGE 39
THREAD 39
TRACEBACK 39, 62
VARIABLES 39, 62
output
for C routines 150
for COBOL program 193
for Fortran routines 221
for PL/I routines 239
information for multiple enclaves 45
PL/I information in 241
section descriptions 57
TERMTHDACT suboptions 42
titte 58
traceback with condition information
C routine 150
COBOL program 195
Language Environment routine 57
PL/I routine 239
using C functions 45
using CDUMP/CPDUMP subroutine 215
using CEE3DMP callable service 37, 57
using DUMP/PDUMP subroutine 215
using PLIDUMP subroutine 45, 239
using SDUMP subroutine 215
using TERMTHDACT run-time option 41

Language Environment/370 (Language Environment)
See Language Environment (Language
Environment/370)
LEDATA
IPCS Verbexit 80
C/C++ Output 104
COBOL Output 110
Format 81
Parameters 81
Understanding Output 84
licensed documents xix
linkage editor
module map 136
linkage section
for COBOL programs in dump 198
LIST compiler option 4, 6, 8
listings generated by compiler
C 135
COBOL 193
Fortran 215
PL/I 232
LMESSAGE compiler option 8
local
variables 60
LookAt message retrieval tool xx

M

machine state information
in dump 60
MAP compiler option 6, 8
memory file control block (MFCB) 157, 158
message
classifying errors and 32
run-time, CICS 257
user-created 25
using in your routine 25
message retrieval tool, LookAt xx
module
fetchable 127
module name prefixes, Language Environment 31
MSG suboption
of TERMTHDACT 41
MSGFILE run-time option
function 9
run-time messages and 32
MSGQ run-time option 10

N

nested condition 28
no response (wait/loop) 32
NOBLOCKS option of CEE3DMP callable service 39
NOCONDITION option of CEESDMP callable

service 40
NOENTRY option of CEESDMP callable service 40
NOFILES option of CEE3DMP callable service 39
NOSTORAGE option of CEE3DMP callable service 39
Notices 279
NOTRACEBACK option of CEE3DMP callable

service 39

NOVARIABLES option of CEESDMP callable
service 39

)

Object file map 136
OFFSET compiler option 4, 6, 8
optimizing
C 3,62
COBOL 6
PL/I 8
options
C compiler 3
COBOL compiler 6
defaults for dump 42
determining run-time in effect 10, 12
Fortran compiler 7
Language Environment run-time 9
PL/I compiler 8
OUTDD compiler option 6

output
incorrect 32
missing 32

P

page
number in dump 58
PAGESIZE(n) option of CEE3DMP callable service 40
parameter
checking value of 24
perror() function 133
PL/I
address of interrupt, finding in dump 243
CAA address, finding in dump 247
common anchor area (CAA) 247
compiler listings
object code listing 236
static storage map 235
variable storage map 236
compiler options
generating listings with 232
list of 7
CSECT 235
debugging examples 247, 252
dump
error type, finding in 243
parameter list, finding contents in 245
PL/I information, finding in 241, 245
PLIDUMP subroutine and 239
statement number, finding in 243
timestamp, finding in 245
variables, finding in 244
ERROR ON-unit 230, 243
errors 229, 232
floating-point register 230
object code listing 236
ON statement control block 236
static storage listing 235
SUBSCRIPTRANGE condition 230, 231, 249
PLIDUMP subroutine 239

Index 291

PMR (Problem Management Record) 274
pointer
variable 127
PPA 269
Prelinker map 136
preventive service planning (PSP) bucket 267
printf() function 26, 128
Problem Management Record (PMR) 274
procedure division listings 193
process
control block 62
member list 62
process control block (PCB) 62
PROFILE run-time option
function 10
program
class storage 198
program prolog area 269
program status word (PSW) 60
pseudo-assembler listing 135
PSP (preventive service planning) bucket 267

Q

QUIET suboption of TERMTHDACT run-time option 41

R

reason code
nonzero returned to CICS 262
under CICS 259
registers 0—15
in dump 58
release number
in dump 58
return code
bad or nonzero 32
RPTOPTS run-time option 10
RPTSTG run-time option 12
run unit
COBOL 199
level control block 199
storage in dump 61, 199
run-time
messages
under CICS 257
run-time options 22
determining those in effect 10, 12
sample options report 10
specifying 24

S

scope
terminator 189
SDUMP routine
description 218
format specifications 218
output 218
usage considerations 218

292 2/0S V1R5.0 Language Environment Debugging Guide

service routines
CDUMP/CPDUMP 217
DUMP/PDUMP 216
SDUMP 218
SET statement 190
shortcut keys 277
signal information in dump 156
sorted cross-reference listing 193
SOURCE compiler option 4, 6, 8
Source file map 136
source listing 136
stack
frame 62

STACKFRAME option of CEE3DMP callable

service 39
statement
numbers
in dump 58
static
variables in dump 244
writable map 139, 140, 144
status
of routines in dump 59
stderr 26
stdio.h 128
stdout 26
storage
evaluating use of 12
for active routines 61
leak detecting 61, 103
offset listing 135
report 12
statistics 18, 20
STORAGE compiler option 8

STORAGE option of CEE3DMP callable service 39

STORAGE run-time option 10
structure
map 135, 143
variable example code 143
symbolic
feedback code 27
symbolic dumps 218
how to call under FORTRAN 218
syntax diagrams
how to read xvii
system
abend
with TRAP(OFF) 32
with TRAP(ON) 32
system dump
generating 77
in z/OS UNIX shell 79

T

task global table (TGT) 198

TERMINAL compiler option 4, 8

TERMTHDACT run-time option
function 9, 41, 250
generating a dump and 23

modifying condition handling behavior and

10

TERMTHDACT run-time option (continued)
suboptions 41
TEST compiler option 4, 6,7
TEST run-time option 10
text file name prefixes, Language Environment 31
THDCOM in dump 201
THREAD option of CEESDMP callable service 39
time
in dump 58
TRACE run-time option
function 10
trace table 118
TRACE suboption of TERMTHDACT run-time
option 41
TRACEBACK option of CEE3DMP callable service 39,
62
transaction
dump 258
rollback 262
rollback effects of assembler user exit on 262
work area 258
TRAP run-time option
function 10
Language Environment condition handling and 23,
77
user abends and 34

U

UADUMP suboption of TERMTHDACT run-time
option 23, 42

UAIMM suboption of TERMTHDACT run-time
option 23, 42

UAONLY suboption of TERMTHDACT run-time
option 23, 41

UATRACE suboption of TERMTHDACT run-time
option 23, 41

unhandled conditions 25, 28

establishing enclave termination behavior for 25
USE EXCEPTION/ERROR declaratives 190

USE FOR DEBUGGING declarative 190, 191
user
abend 34
code 32
exit 24,25
heap
statistics 20
stack

statistics 18
user-specified abends 34
USRHDLR run-time option 9, 23
utility and service subroutines

CDUMP/CPDUMP 217
DUMP/PDUMP 216
SDUMP 218

\'

variables
in Language Environment dump 62
structure example code 143

VARIABLES option of CEESDMP callable service
62
VBREF compiler option 6
verb cross-reference 193
verbexit
LEDATA 80
version number
in dump 58

w

working storage
in dump 61, 198

X

XPLINK
downward-growing stack 63
finding XPLINK information in a dump 166
storage stastics 19
trace table entries for 167
XREF compiler option 6, 8
XUFLOW run-time option
function 10
modifying condition handling behavior and 23

Z

z/OS UNIX System Services
C application program and 183
generating a system dump 79

Index

39,

293

294 2/0S V1R5.0 Language Environment Debugging Guide

Readers’ Comments — We’d Like to Hear from You

z/0S

Language Environment
Debugging Guide

Publication No. GA22-7560-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral
Overall satisfaction]]]

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral
Accurate O O L]
Complete O O L]
Easy to find O O L]
Easy to understand O O Ul
Well organized O O]
Applicable to your tasks] | Ul

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

Dissatisfied

O

Dissatisfied

Ooogooo

Very Dissatisfied
0

Very Dissatisfied

Ooogooo

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

GA22-7560-04

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

GA22-7560-04

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road
Poughkeepsie, NY
12601-5400

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5694-A01, 5655-G52

Printed in USA

GA22-7560-04

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	This Debugging Guide
	Where to find more information
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	Information updates on the web

	Summary of Changes
	Part 1. Introduction to Debugging in Language Environment
	Chapter 1. Preparing your routine for debugging
	Setting compiler options
	C and C++ compiler options
	IPA compile step sub-options
	IPA link step sub-options

	COBOL compiler options
	Fortran compiler options
	PL/I compiler options
	VisualAge PL/I compiler options

	Using Language Environment run-time options
	Determining run-time options in effect
	Using the CLER CICS transaction to display and set run-time options

	Controlling storage allocation
	Stack storage statistics
	STACK, THREADSTACK, and LIBSTACK statistics for the upward-growing stack
	XPLINK statistics — XPLINK STACK and XPLINK THREADSTACK statistics for the downward-growing stack
	Determining the applicable threads
	Allocating stack storage

	Heap storage statistics
	HEAP, HEAP24, THREADHEAP, ANYHEAP, and BELOWHEAP statistics
	THREADHEAP statistics
	HEAP, HEAP24, ANYHEAP, BELOWHEAP, and additional heap Statistics
	HEAP, HEAP24, THREADHEAP, ANYHEAP, BELOWHEAP, and additional heap statistics
	Additional heap statistics

	HeapPools storage statistics

	Modifying condition handling behavior
	Language Environment callable services
	Language Environment run-time options
	Customizing condition handlers
	Invoking the assembler user exit
	Establishing enclave termination behavior for unhandled conditions

	Using messages in your routine
	C/C++
	COBOL
	Fortran
	PL/I

	Using condition information
	Using the feedback code parameter
	Using the symbolic feedback code

	Chapter 2. Classifying errors
	Identifying problems in routines
	Language Environment module names
	Common errors in routines

	Interpreting run-time messages
	Message prefix
	Message number
	Severity code
	Message text

	Understanding abend codes
	User abends
	System abends

	Chapter 3. Using Language Environment debugging facilities
	Debug tool
	Language Environment dump service, CEE3DMP
	Generating a Language Environment dump with CEE3DMP
	Generating a Language Environment dump with TERMTHDACT
	Considerations for setting TERMTHDACT options

	Generating a Language Environment dump with language-specific functions
	Understanding the Language Environment dump
	Sections of the Language Environment dump

	Debugging with specific sections of the Language Environment dump
	The tracebacks, condition information, and data values section
	The upward-growing (non-XPLINK) stack frame section
	The downward-growing (XPLINK) stack frame section
	The Common Anchor Area
	The condition information block
	Using the machine state information block

	Multiple enclave dumps
	Generating a system dump
	Steps for generating a system dump in a batch run-time environment
	Steps for generating a system dump in an IMS run-time environment
	Steps for generating a system dump in a CICS run-time environment
	Steps for generating a Language Environment U4039 abend
	Steps for Generating a system dump in a z/OS UNIX shell

	Formatting and analyzing system dumps
	Preparing to use the Language Environment support for IPCS
	Language Environment IPCS Verbexit – LEDATA
	Format
	Parameters
	Report type parameters

	Understanding the HEAPPOOLS trace output
	Understanding the Language Environment IPCS verbexit LEDATA output
	Sections of the Language Environment LEDATA verbexit formatted output

	Understanding the HEAP LEDATA output
	Heap report sections of the LEDATA output
	Diagnosing heap damage problems
	Diagnosing storage leak problems

	Diagnosing heap fragmentation problems

	Understanding the C/C++-specific LEDATA output
	C/C++-specific sections of the LEDATA output

	Understanding the COBOL-specific LEDATA output
	COBOL-specific sections of the LEDATA Output

	Formatting individual control blocks
	Requesting a Language Environment trace for debugging
	Locating the trace dump
	Using the Language Environment trace table format in a dump report
	Understanding the trace table entry (TTE)
	Member-specific information in the trace table entry

	Sample dump for the trace table entry

	Part 2. Debugging Language-Specific Routines
	Chapter 4. Debugging C/C++ Routines
	Debugging C/C++ Input/Output Programs
	Using the __amrc and __amrc2 Structures
	__last_op Values
	Displaying an Error Message with the perror() Function
	Using __errno2() to Diagnose Application Problems

	Using C/C++ Listings
	Generating C/C++ Listings and Maps
	C, C++, and C/C++ IPA Listings

	Finding variables
	Steps for finding automatic variables
	Locating the Writable Static Area
	Steps for finding the static storage area
	Steps for finding RENT static variables
	Steps for finding external RENT variables
	Steps for finding NORENT static variables
	Steps for finding external NORENT variables
	Steps for finding the C/370 parameter list
	Steps for finding the C++ parameter list
	Steps for finding members of aggregates
	Finding the Timestamp

	Generating a Language Environment Dump of a C/C++ Routine
	cdump()
	csnap()
	ctrace()
	Sample C Routine that Calls cdump
	Sample C++ Routine that Generates a Language Environment Dump
	Sample Language Environment Dump with C/C++-Specific Information
	Finding C/C++ Information in a Language Environment Dump
	Additional Floating-Point Registers

	Sample Language Environment Dump with XPLINK-Specific Information
	Finding XPLINK Information in a Language Environment Dump

	C/C++ Contents of the Language Environment Trace Tables
	Debugging Examples of C/C++ Routines
	Divide-by-Zero Error
	Calling a Nonexistent Non-XPLINK Function
	Calling a Nonexistent XPLINK Function

	Handling Dumps Written to the z/OS UNIX File System
	Multithreading Consideration
	Understanding C/C++ Heap Information in Storage Reports
	Language Environment Storage Report with HeapPools Statistics
	HeapPools Storage Statistics

	C Function, __uheapreport, Storage Report

	Chapter 5. Debugging COBOL programs
	Determining the source of error
	Tracing program logic
	Finding input/output errors
	Handling input/output errors
	Validating data (class test)
	Assessing switch problems
	Generating information about procedures

	Using COBOL listings
	Generating a Language Environment dump of a COBOL program
	COBOL program that calls another COBOL program
	COBOL program that calls the Language Environment CEE3DMP callable service
	Sample Language Environment dump with COBOL-specific information
	Finding COBOL information in a dump
	Control block information for active routines
	Storage for each active routine
	Enclave-level data
	Process-level data

	Debugging example COBOL programs
	Subscript range error
	Calling a nonexistent subroutine
	Divide-by-zero error

	Chapter 6. Debugging FORTRAN routines
	Determining the source of errors in FORTRAN routines
	Identifying run-time errors

	Using FORTRAN compiler listings
	Generating a Language Environment dump of a FORTRAN routine
	DUMP/PDUMP subroutines
	Usage considerations for DUMP/PDUMP

	CDUMP/CPDUMP subroutines
	Usage considerations for CDUMP/CPDUMP

	SDUMP subroutine
	Usage considerations for SDUMP

	Finding FORTRAN information in a Language Environment dump
	Understanding the Language Environment traceback table
	Identifying condition information
	Identifying variable information
	Identifying file status information

	Examples of debugging FORTRAN routines
	Calling a nonexistent routine
	Divide-by-zero error

	Chapter 7. Debugging PL/I routines
	Determining the source of errors in PL/I routines
	Logic errors in the source routine
	Invalid use of PL/I
	Unforeseen errors
	Invalid input data
	Compiler or run-time routine malfunction
	System malfunction
	Unidentified routine malfunction
	Storage overlay problems

	Using PL/I compiler listings
	Generating PL/I listings and maps
	Finding information in PL/I listings
	Static internal storage map
	Variable storage map
	Object code listing

	Generating a Language Environment dump of a PL/I routine
	PLIDUMP syntax and options
	PLIDUMP usage notes

	Finding PL/I information in a dump
	Traceback
	PL/I task traceback
	Condition information
	Statement number and address where error occurred

	Control blocks for active routines
	Automatic variables
	Static Variables
	Based variables
	Area variables
	Variables in areas
	Contents of parameter lists
	Timestamp

	Control blocks associated with the thread
	The CAA
	File status and attribute information

	PL/I contents of the Language Environment trace table
	Debugging example of PL/I routines
	Subscript range error
	Calling a nonexistent subroutine
	Divide-by-Zero error

	Chapter 8. Debugging under CICS
	Accessing debugging information
	Locating Language Environment run-time messages
	Locating the Language Environment traceback
	Locating the Language Environment dump
	Using CICS transaction dump
	Using CICS register and program status word contents
	Using Language Environment abend and reason codes
	Using Language Environment return codes to CICS

	Activating Language Environment feature trace records under CICS
	Ensuring transaction rollback
	Finding data when Language Environment returns a nonzero return code
	Finding data when Language Environment abends internally
	Finding data when Language Environment Abends from an EXEC CICS command
	Displaying and modifying run-time options with the CLER transaction

	Part 3. Appendixes
	Appendix A. Diagnosing Problems with Language Environment
	Diagnosis Checklist
	Locating the Name of the Failing Routine for a Non-XPLINK Application

	Searching the IBM Software Support Database
	Preparing Documentation for an Authorized Program Analysis Report (APAR)

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS Information

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Language Products Publications
	Related Publications
	Softcopy Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

